Let X be a smooth projective variety of dimension 2k-1 (k≥3) over the complex number field. Assume that fR: X→Y is a small contraction such that every irreducible component Ei of the exceptional locus of fR is a smooth subvariety of dimension k. It is shown that each Ei is isomorphic to the k-dimensional projective space Pk, the k-dimensional hyperquadric surface Qk in Pk+1, or a linear Pk-1-bundle over a smooth curve.
Detecting population (group) differences is useful in many applications, such as medical research. In this paper, we explore the probabilistic theory for identifying the quantile differences .between two populations. Suppose that there are two populations x and y with missing data on both of them, where x is nonparametric and y is parametric. We are interested in constructing confidence intervals on the quantile differences of x and y. Random hot deck imputation is used to fill in missing data. Semi-empirical likelihood confidence intervals on the differences are constructed.