Ground crack and subsidence were investigated in Kaiyang Phosphorus Mine as an example. Contribution factors to cause ground crack and mining subsidence were studied, including mining method, mining depth and ore thickness and stope size, dip angle of orebody, geological structure, nature of overburden and water contents, and roof supports, etc. Countermeasures against cracks and subsidence were put forward. The uniaxial compressive strength of compounded phosphorus gypsum after 28 d of curing period was tested to be more than 1 MPa. Phosphorus gypsum can be used as materials for the backfill of stope. By comparison and numerical simulation, cut and fill mining method with middle-deep drilling holes and ore transportation by blasting force was selected as the optimum mining method in Kaiyang Phosphorus Mine.
The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis. When the stochastic stress waves transmit through rocks, the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods. The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods. The results show the harder the rock, the less absorption of energy, the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock. When the whole stress energy doubles either by doubling the duration time or by increasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to the whole stress energy (i.e. energy dissipation ratio) is decreased to 10%-15%. When doubling the duration time, the cutoff frequency to fracture rock remains constant. However, with the increase of the amplitude of stress wave, the cutoff frequency increases accordingly.
A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was used to approximate the PDF of parameters. X^2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.