In order to improve the hydrogenation and dehydrogenation performances of the Mg2Ni-type alloys, Mg was partially substituted by La in the alloy, and melt spinning technology was used for the preparation of the Mg20-xLaxNi10 (x=0, 2, 4, 6) hydrogen storage alloys. The structures of the alloys were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). It was found that no amorphous phase formed in the as-spun La-free alloy, but the as-spun alloys containing La held a major amorphous phase. When La content x≤2, the major phase in the as-cast alloys was Mg2Ni phase, but with further increase of La content, the major phase of the as-cast alloys changed into LaNi5+LaMg3 phase. Thermal stability of the as-spun alloys was studied by differential scanning calorimetry (DSC), showing that spinning rate was a negligible factor on the crystallization temperature of the amorphous phase. The hydrogen absorption and desorption kinetics of the as-cast and as-spun alloys were measured using an automatically controlled Sieverts apparatus, confirming that the hydrogen absorption and desorption capacities and kinetics of the as-cast alloys clearly increased with rising La content. For La content x=2, the as-spun alloy displayed optimal hydrogen desorption kinetics at 200 ℃.
The structure and high-temperature electrochemical properties of the as-cast and annealed (940 °C, 8 h) La0.60Nd0.15Mg0.25Ni3.3Si0.10 hydrogen storage alloys were investigated. The X-ray diffraction revealed that the multiphase structure of the as-cast alloy with LaNi5 phase as the main phase was converted into a double-phase structure with La2Ni7 phase as the main phase after annealing. The surface morphology studied by scanning electronic microscope (SEM) showed that the annealed alloy had a much higher anti-corrosion ability than the as-cast alloy. Both alloys presented excellent activation characteristics at all test temperatures. The maximum discharge capacity of the as-cast alloy decreased when the test temperature increased, while the temperature almost had no effect on the annealed alloy. As the test temperature increased, the cyclic stability and charge retention of both alloys decreased, and these properties were improved significantly by annealing.
In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure of the alloys were investigated in detail. XRD results showed that the alloys had multiphase structure composed of (La, Mg)2Ni7, LaNi5 and small amount of LaNi2 phases. The discharge capacity of the alloys first increased and then decreased with increasing Co content. At a discharge current density of 900 mA/g, the HRD of the alloy electrodes increased from 81.3% (x=0) to 89.2 % (x=0.2), and then reduced to 87.8 % (x=0.6). After 60 charge/discharge cycles, the capacity retention rate of the alloys enhanced from 52.67% to 61.32%, and the capacity decay rate of the alloys decreased from 2.60 to 2.05 mAh/g per cycle with increasing Co content. The obtained results by XPS and XRD showed that the fundamental reasons for the capacity decay of the La-Mg-Ni system (Ce2Ni7-type) alloy electrodes were corrosion and oxidation as well as passivation of Mg and Lain alkaline solution.
The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a thickness of about 30 μm and a width of about 25 mm are obtained. The structures of the as-spun alloy ribbons were characterized by XRD and HRTEM. The electrochemical hydrogen storage characteristics of the as-spun alloy ribbons were measured by an automatic galvanostatic system. The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation. The hydrogen diffusion coefficients (D) in the alloys were calculated by virtue of potential-step measurement. The results show that all the as-spun (x=0) alloys hold a typical nanocrystalline structure, whereas the as-spun (x=0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of Mn for Ni significantly improves the electrochemical hydrogen storage performances of the alloys, involving the discharge capacity and the electrochemical cycle stability. With an increase in the amount of Mn substitution from 0 to 0.4, the discharge capacity of the as-spun (20 m/s) alloy increases from 96.5 to 265.3 mA·h/g, and its capacity retaining rate (S20) at the 20th cycle increases from 31.3% to 70.2%. Furthermore, the high rate dischargeability (HRD), electrochemical impedance spectrum and potential-step measurements all indicate that the electrochemical kinetics of the alloy electrodes first increases then decreases with raising the amount of Mn substitution.