The LPT (Lanzhou Penning Trap) is under construction and its task is to perform direct mass measurement of fusion-evaporation residues and if possible for heavy isotopes. Detailed simulations have been done for a good understanding to the ion’s movement and mechanics in the trap. The optimization of the LPT is also performed based on the simulation. With a scale of 0.5 mm per grid used in the simulation and many other limitations a highest mass resolution has been achieved to be 1.9×10-5. An unexpected behaviour in the simulation related to magnetron motion has been found.
A Penning trap system called Lanzhou Penning Trap(LPT) is now being developed for precise mass measurements at the Institute of Modern Physics(IMP).One of the key components is a 7 T actively shielded superconducting magnet with a clear warm bore of 156 mm.The required field homogeneity is 3 × 10-7 over two 1 cubic centimeter volumes lying 220 mm apart along the magnet axis.We introduce a two-step method which combines linear programming and a nonlinear optimization algorithm for designing the multi-section superconducting magnet.This method is fast and flexible for handling arbitrary shaped homogeneous volumes and coils.With the help of this method an optimal design for the LPT superconducting magnet has been obtained.