We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.
The family of cubic Thue equation which depend on two parameters | x^3 + mx^2 y-(m+3) xy^2+y^3|=k is studied. Using rational approximation, we give a smaller upper bound of the solution of the equation, that is quite better than the present result. Moreover, we study two inequalities | x^3 + mx^2y-(m + 3) xy^2+y^3 | =k≤2m+3 and |x^3 +mx^2y- (m+3)xy^2 + y^3| = k≤ (2m+3)^2 separately. Our result of upper bound make it easy to solve those inequalities by simple method of continuous fraction expansion.