您的位置: 专家智库 > >

国家自然科学基金(41075091)

作品数:2 被引量:6H指数:2
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:天文地球环境科学与工程更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇天文地球
  • 1篇环境科学与工...

主题

  • 1篇NATURA...
  • 1篇OCEAN
  • 1篇RECENT
  • 1篇STUDIE...
  • 1篇TRANSP...
  • 1篇CARBON
  • 1篇CHINES...
  • 1篇CLIMAT...
  • 1篇MERIDI...
  • 1篇MODEL
  • 1篇BIOGEO...
  • 1篇SUMMAR...

传媒

  • 2篇Advanc...

年份

  • 1篇2013
  • 1篇2012
2 条 记 录,以下是 1-2
排序方式:
Summary of Recent Climate Change Studies on the Carbon and Nitrogen Cycles in the Terrestrial Ecosystem and Ocean in China被引量:2
2012年
This article reviews recent advances over the past and their relationship to climate change in China. The was 0.19-0.26 Pg C yr-1 for the 1980s and 1990s. 4 years in the study of the carbon-nitrogen cycling net carbon sink in the Chinese terrestrial ecosystem Both natural wetlands and the rice-paddy regions emitted 1.76 Tg and 6.62 Tg of CH4 per year for the periods 1995 2004 and 2005 2009, respectively. China emitted -1.1 Tg N20-N yr-1 to the atmosphere in 2004. Land soil contained -8.3 Pg N. The excess nitrogen stored in farmland of the Yangtze River basin reached 1.51 Tg N and 2.67 Tg N in 1980 and 1990, respectively. The outer Yangtze Estuary served as a moderate or significant sink of atmospheric CO2 except in autumn. Phytoplankton could take up carbon at a rate of 6.4 ×1011 kg yr-1 in the China Sea. The global ocean absorbed anthropogenic CO2 at the rates of 1.64 and 1.73 Pg C yr-1 for two sinmlations in the 1990s. Land net ecosystem production in China would increase until the mid-21st century then would decrease gradually under future climate change scenarios. This research should be strengthened in the future, including collection of more observation data, measurement of the soil organic carbon (SOC) loss and sequestration, evaluation of changes in SOC in deep soil layers, and the impacts of grassland management, carbon-nitrogen coupled effects, and development and improvement of various component models and of the coupled carbon cycle-climate model.
徐永福黄耀李阳春
A Global Ocean Biogeochemistry General Circulation Model and its Simulations被引量:4
2013年
An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within ~15~ of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 ~mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.
徐永福李阳春储敏
共1页<1>
聚类工具0