In this paper, we define the notion of self-dual graded weak Hopf algebra and self-dual semilattice graded weak Hopf algebra. We give characterization of finite-dimensional such algebras when they are in structually simple forms in the sense of E. L. Green and E. N. Morcos. We also give the definition of self-dual weak Hopf quiver and apply these types of quivers to classify the finite- dimensional self-dual semilattice graded weak Hopf algebras. Finally, we prove partially the conjecture given by N. Andruskiewitsch and H.-J. Schneider in the case of finite-dimensional pointed semilattice graded weak Hopf algebra H when grH is self-dual.
In this paper,we first give a direct sum decomposition of Lie comodules,and then accord- ing to the Lie comodule theory,construct some(triangular)Lie bialgebras through Lie coalgebras.
ZHANG LiangYun College of Science,Nanjing Agricultural University,Nanjing 210095,China
Let B and H be finitely generated projective Hopf algebras over a commutative ring R, with B cocommutative and H commutative. In this paper we investigate cocleft extensions of Hopf algebras, and prove that the isomorphism classes of cocleft Hopf algebras extensions of B by H are determined uniquely by the group C(B, H) = ZC(B, H)/d(B, H) .