Let Km,n be a complete bipartite graph with two partite sets having m and n vertices, respectively. A Pv-factorization of Km,n is a set of edge-disjoint Pv-factors of Km,n which partition the set of edges of Km,n. When v is an even number, Wang and Ushio gave a necessary and sufficient condition for existence of Pv-factorization of Km,n. When k is an odd number, Ushio in 1993 proposed a conjecture. Very recently, we have proved that Ushio's conjecture is true when v = 4k - 1. In this paper we shall show that Ushio Conjecture is true when v = 4k + 1, and then Ushio's conjecture is true. That is, we will prove that a necessary and sufficient condition for the existence of a P4k+1-factorization of Km,n is (i) 2km ≤ (2k + 1)n,(ii) 2kn ≤ (2k + 1)m, (iii) m + n ≡ 0 (mod 4k + 1), (iv) (4k + 1)mn/[4k(m + n)] is an integer.
DU Beiliang & WANG Jian Department of Mathematics, Suzhou University, Suzhou 215006, China
A strong partially balanced design SPBD(v, b, k; λ,0) whose b is the maximum number of blocks in all SPBD(v, b, k; λ, 0), as an optimal strong partially balanced design, briefly OSPBD(v, k, λ) is studied. In investigation of authentication codes it has been found that the strong partially balanced design can be used to construct authentication codes. This note investigates the existence of optimal strong partially balanced design OSPBD(v, k, 1) for k = 3 and 4, and shows that there exists an OSPBD(v, k, 1) for any v ≥ k.
Let λK m,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A P v-factorization of λK m,n is a set of edge-disjoint P v-factors of λK m,n which partition the set of edges of λK m,n . When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P v-factorization of λK m,n . When v is an odd number, we have proposed a conjecture. Very recently, we have proved that the conjecture is true when v = 4k ? 1. In this paper we shall show that the conjecture is true when v = 4k + 1, and then the conjecture is true. That is, we will prove that the necessary and sufficient conditions for the existence of a P 4k+1-factorization of λK m,n are (1) 2km ? (2k + 1)n, (2) 2kn ? (2k + 1)m, (3) m + n ≡ 0 (mod 4k + 1), (4) λ(4k + 1)mn/[4k(m + n)] is an integer.
A K1,k-factorization of λKm,n is a set of edge-disjoint K1,k-factors of λKm,n, which partition the set of edges of λKm,n. In this paper, it is proved that a sufficient condition for the existence of K1,k-factorization of λKm,n, whenever k is any positive integer, is that (1) m ≤ kn, (2) n ≤ km, (3) km-n = kn-m ≡ 0 (mod (k^2- 1)) and (4) λ(km-n)(kn-m) ≡ 0 (mod k(k- 1)(k^2 - 1)(m + n)).
LetλKm,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A Pν-factorization ofλKm,n is a set of edge-disjoint Pν-factors ofλKm,n which partition the set of edges ofλKm,n. Whenνis an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a Pν-factorization ofλKm,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true forν= 3. In this paper we will show that the conjecture is true whenν= 4k-1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization ofλKm,n is (1) (2k-1)m≤2kn, (2) (2k-1)n≤2km, (3)m + n = 0 (mod 4k-1), (4)λ(4k-1)mn/[2(2k-1)(m + n)] is an integer.
WANG Jian & DU Beiliang Nantong Vocational College, Nantong 226007, China