您的位置: 专家智库 > >

国家自然科学基金(10571133)

作品数:10 被引量:8H指数:2
相关作者:王建杜北梁梁淼施静更多>>
相关机构:苏州大学南通职业大学南通大学更多>>
发文基金:国家自然科学基金江苏省高校自然科学研究项目更多>>
相关领域:理学文化科学自动化与计算机技术电子电信更多>>

文献类型

  • 10篇中文期刊文章

领域

  • 9篇理学
  • 1篇电子电信
  • 1篇自动化与计算...
  • 1篇文化科学

主题

  • 4篇BIPART...
  • 4篇FACTOR...
  • 3篇P
  • 3篇MULTIG...
  • 3篇MULTIG...
  • 2篇完全二部图
  • 2篇二部图
  • 2篇FACTOR
  • 2篇IZATIO...
  • 1篇英文
  • 1篇整数
  • 1篇正整数
  • 1篇偶数
  • 1篇奇数
  • 1篇边集
  • 1篇OPTIMA...
  • 1篇PARTIA...
  • 1篇PROOF
  • 1篇SPECTR...
  • 1篇STRONG

机构

  • 4篇苏州大学
  • 3篇南通职业大学
  • 1篇南通大学

作者

  • 3篇杜北梁
  • 3篇王建
  • 1篇梁淼
  • 1篇施静

传媒

  • 3篇中国科学(A...
  • 3篇Scienc...
  • 2篇Applie...
  • 1篇苏州大学学报...
  • 1篇南通职业大学...

年份

  • 1篇2008
  • 4篇2007
  • 5篇2006
10 条 记 录,以下是 1-10
排序方式:
可分解分裂BIBD的构作(英文)被引量:1
2006年
分裂平衡不完全区组设计(分裂BIBD)是Ogata,Kurosawa,Stinson和Saido最近为研究k-分裂认证码的需要而引进的一类设计,用分裂BIBD构造的认证码在信息论的意义上是最优的.本文建立可分解分裂BIBD的一些构作方法.
梁淼
The proof of Ushio's conjecture concerning path factorization of complete bipartite graphs被引量:4
2006年
Let Km,n be a complete bipartite graph with two partite sets having m and n vertices, respectively. A Pv-factorization of Km,n is a set of edge-disjoint Pv-factors of Km,n which partition the set of edges of Km,n. When v is an even number, Wang and Ushio gave a necessary and sufficient condition for existence of Pv-factorization of Km,n. When k is an odd number, Ushio in 1993 proposed a conjecture. Very recently, we have proved that Ushio's conjecture is true when v = 4k - 1. In this paper we shall show that Ushio Conjecture is true when v = 4k + 1, and then Ushio's conjecture is true. That is, we will prove that a necessary and sufficient condition for the existence of a P4k+1-factorization of Km,n is (i) 2km ≤ (2k + 1)n,(ii) 2kn ≤ (2k + 1)m, (iii) m + n ≡ 0 (mod 4k + 1), (iv) (4k + 1)mn/[4k(m + n)] is an integer.
DU Beiliang & WANG Jian Department of Mathematics, Suzhou University, Suzhou 215006, China
关键词:COMPLETEBIPARTITE
EXISTENCE OF OPTIMAL STRONG PARTIALLY BALANCED DESIGNS
2007年
A strong partially balanced design SPBD(v, b, k; λ,0) whose b is the maximum number of blocks in all SPBD(v, b, k; λ, 0), as an optimal strong partially balanced design, briefly OSPBD(v, k, λ) is studied. In investigation of authentication codes it has been found that the strong partially balanced design can be used to construct authentication codes. This note investigates the existence of optimal strong partially balanced design OSPBD(v, k, 1) for k = 3 and 4, and shows that there exists an OSPBD(v, k, 1) for any v ≥ k.
Du Beiliang
λK_(m,n)的P_k-分解
2007年
λKm,n的Pk-分解就是一个(X,B),其中X是Km,n的顶点集,B是Km,n的子图族,每个子图(称为区组)均同构于Pk,且Km,n中任一边都恰好出现在B的!个区组中。Ushio在其综述文献中提出了!Km,n的Pk-分解存在性问题的一个猜想。文章证明了该猜想当k=4,5时成立。
施静
关键词:完全二部图
The spectrum of path factorization of bipartite multigraphs
2007年
Let λK m,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A P v-factorization of λK m,n is a set of edge-disjoint P v-factors of λK m,n which partition the set of edges of λK m,n . When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P v-factorization of λK m,n . When v is an odd number, we have proposed a conjecture. Very recently, we have proved that the conjecture is true when v = 4k ? 1. In this paper we shall show that the conjecture is true when v = 4k + 1, and then the conjecture is true. That is, we will prove that the necessary and sufficient conditions for the existence of a P 4k+1-factorization of λK m,n are (1) 2km ? (2k + 1)n, (2) 2kn ? (2k + 1)m, (3) m + n ≡ 0 (mod 4k + 1), (4) λ(4k + 1)mn/[4k(m + n)] is an integer.
Jian WANG~1 Bei-liang DU~(2+) 1 Nantong Vocational College,Nantong 226007,China
关键词:FACTORIZATION
二部多重图的P_(4k-1)-因子分解被引量:1
2006年
如果二部多重图λK_(m,n)的边集可以划分为λK_(m,n)的P_v-因子,则称λK_(m,n)存在P_v-因子分解.当v是偶数时,Ushio,Wang和本文的第2作者给出了λK_(m,n)存在P_v-因子分解的充分必要条件.同时提出了当v是奇数时λK_(m,n)存在P_v-因子分解的猜想,但是至今为止仅知当v=3时该猜想成立.对于正整数k,本文证明λK_(m,n)存在P_(4k-1)-因子分解的充分必要条件是:(1)(2k-1)m≤2kn,(2)(2k-1)n≤2km,(3)m+n≡0(mod 4k-1),(4)λ(4k-1)mn/[2(2k- 1)(m+n)]是整数,即证明:对于任何正整数k,当v=4k-1时上述猜想成立.
王建杜北梁
On K_(1,k)-factorization of bipartite multigraphs
2008年
A K1,k-factorization of λKm,n is a set of edge-disjoint K1,k-factors of λKm,n, which partition the set of edges of λKm,n. In this paper, it is proved that a sufficient condition for the existence of K1,k-factorization of λKm,n, whenever k is any positive integer, is that (1) m ≤ kn, (2) n ≤ km, (3) km-n = kn-m ≡ 0 (mod (k^2- 1)) and (4) λ(km-n)(kn-m) ≡ 0 (mod k(k- 1)(k^2 - 1)(m + n)).
WANG Jian
关键词:FACTORFACTORIZATION
二部多重图路因子分解的存在谱
2007年
若二部多重图λKm,n的边集可以划分为λKm,n的Pv-因子,则称λKm,n存在Pv-因子分解.当v是偶数时,Ushio和Wang及本文的第二作者给出了λKm,n存在Pv-因子分解的充分必要条件.同时提出了当v是奇数时λKm,n存在Pv-因子分解的猜想.最近我们已经证明当v=4k-1时该猜想成立.对于正整数k,文中证明λKm,n存在P4k+1-因子分解的充分必要条件是:(1)2km≤(2k+1)n,(2)2kn≤(2k+1)m,(3)m+n≡0(mod 4k+1),(4)λ(4k+1)mn/[4k(m+n)]是整数.即证明:对于任意正整数k,当v=4k+1时上述猜想成立,从而最终完成了该猜想成立的证明.
王建杜北梁
完全二部图存在路因子分解的Ushio猜想的证明被引量:3
2006年
如果完全二部图Km,n的边集可以划分为Km,n的Pv-因子,则称Km,n 存在Pv-因子分解.当v是偶数时,Ushio和Wang给出了Km,n存在Pv-因子分解的充分必要条件.Ushio在其综述文章中提出了当v是奇数时Km,n存在Pv- 因子分解的猜想.已经证明当v=4k-1时Ushio猜想成立.对于正整数k,本文证明Km,n存在P4k+1-因子分解的充分必要条件是:(1)2km≤(2k+1)n,(2) 2kn≤(2k+1)m,(3)m+n≡0(mod 4k+1),(4)(4k+1)mn/[4k(m+n)]是整数.即证明:对于任何正整数k,当v=4k+1时Ushio猜想成立,从而最终完成了Ushio猜想成立的证明.
杜北梁王建
关键词:完全二部图猜想正整数边集偶数奇数
P_(4k-1)-factorization of bipartite multigraphs被引量:1
2006年
LetλKm,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A Pν-factorization ofλKm,n is a set of edge-disjoint Pν-factors ofλKm,n which partition the set of edges ofλKm,n. Whenνis an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a Pν-factorization ofλKm,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true forν= 3. In this paper we will show that the conjecture is true whenν= 4k-1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization ofλKm,n is (1) (2k-1)m≤2kn, (2) (2k-1)n≤2km, (3)m + n = 0 (mod 4k-1), (4)λ(4k-1)mn/[2(2k-1)(m + n)] is an integer.
WANG Jian & DU Beiliang Nantong Vocational College, Nantong 226007, China
关键词:BIPARTITE
共1页<1>
聚类工具0