Radioactive decay of super heavy nuclei via the emission of α-particles has been studied theoretically in the preformed cluster model (PCM). The nucleus-nucleus (NN) potential is obtained by double folding the density distributions of the α-particle and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction, supplemented by a zero-range pseudo-potential for exchange term, is used to calculate the NN potential. The α decay half-lives for 317 nuclei at Z=102 120 are performed in the PCM framework with the theoretical Q values extracted from the MSller-Nix-Kratz and Liran-Marinov-Zeldes mass tables and are compared with the experimental data. The calculated results are also compared with those obtained by using Q values from the Muntian-Hofmann-Patyk-Sobiczewski and Myers-Swiatecki mass estimates.
The low-lying electric dipole strengths in proton-rich nuclei 17F and 17Ne, which can be produced at HIRFL-CSR in Lanzhou, are investigated. In the framework of the covariant density functional theory the self-consistent relativistic Hartree Bogoliubov model and the relativistic quasiparticle random phase approximation with the NL3 parameter set and Gogny pairing interaction are adopted in the calculations. A pronounced dipole peak appears below 10 MeV in17Ne, but does not occur in 17F. The prop erties of this low-lying E1 excitation in 17Ne are studied, which may correspond to a proton pygmy resonance with different characteristics from those of giant dipole resonance.
MA ZhongYu1,2 & TIAN Yuan1 1 China Institute of Atomic Energy, Beijing 102413, China