您的位置: 专家智库 > >

国家自然科学基金(61272073)

作品数:2 被引量:4H指数:2
相关作者:石文娟云飞龙舜更多>>
相关机构:暨南大学更多>>
发文基金:国家自然科学基金广东省自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...

主题

  • 1篇迭代
  • 1篇迭代式
  • 1篇信息度
  • 1篇知识
  • 1篇朴素贝叶斯
  • 1篇歧义
  • 1篇歧义消除
  • 1篇文本分类
  • 1篇背景知识
  • 1篇贝叶斯
  • 1篇DATA_C...
  • 1篇WORK
  • 1篇WORKLO...

机构

  • 1篇暨南大学

作者

  • 1篇龙舜
  • 1篇云飞
  • 1篇石文娟

传媒

  • 1篇计算机工程与...
  • 1篇Fronti...

年份

  • 1篇2017
  • 1篇2015
2 条 记 录,以下是 1-2
排序方式:
Allocating workload to minimize the power consumption of data centers被引量:2
2017年
Reducing the power consumption has become one of the most important challenges in designing modem data centers due to the explosive growth of data. The tradi- tional approaches employed to decrease the power consump- tion normally do not consider the power of IT devices and the power of cooling system simultaneously. In contrast to existing works, this paper proposes a power model which can minimize the overall power consumption of data centers by balancing the computing power and cooling power. Fur- thermore, an enhanced genetic algorithm (EGA) is designed to explore the solution space of the power model since the model is a liner programming problem. However, EGA is computing intensive and the performance gradually decreases with the growth of the problem size. Therefore, heuristic greedy sequence (HGS) is proposed to simplify the calcu- lation by leveraging the nature of greed. In contrast to EGA, HGS can determine the workload allocation of a specific data center layout with only one calculation. Experimental results demonstrate that both the EGA and HGS can significantly reduce the power consumption of data centers in contrast to the random algorithm. Additionally, HGS significantly out- performs EGA in terms of the continuity of workload alloca- tion and execution performance.
Ruihong LINYuhui DENG
基于背景学习的迭代式文本分类框架被引量:2
2015年
随着网络文本数据呈指数级增长,信息的人工分类和管理逐渐被计算机自动分类所替代,相关领域经过多年的研究和发展已经开发出一些相对成熟的算法。研究分析发现:在文本预处理阶段歧义语段的划分始终是影响分类准确率的一个重要因素,至今仍未完全解决。结合互信息度理论,提出一种基于背景学习的迭代式框架,在此基础上通过对分词数据预处理来改进传统的基于朴素贝叶斯模型的文本分类算法,并使用新浪网不同类别数据对提出的迭代式框架进行实验评估,实验结果表明提出的基于背景学习的迭代式文本分类框架可行有效。
石文娟龙舜云飞
关键词:背景知识迭代朴素贝叶斯文本分类歧义消除
共1页<1>
聚类工具0