Based on the statistics of all surface drifting buoys of 1978-2011 and Lagrangian tracers simulated from high quality ocean reanalysis currents,the impact times and strength of Fukushima nuclear pollution to the east coast of China and the west coast of America have been estimated.Under the circumstances of the radioactive pollutants drifting in the ocean surface,preliminary research results show that while the tracers took about 4 years to reach the west coast of USA,there are two types of tracers to carry out Fukushima nuclear pollutants to reach the east coast of China,corresponding to 1.5-year recirculation gyre transport and 3.5-year subtropical circulation transport.The distributions of the impact strength at these time scales are given according to the variation of relative number concentration with time combined with the decaying rate of radioactive matter.For example,starting from 1% at 1.5-year,of the initial level at the originating area of Fukushima nuclear pollution,the impact strength of Cesium-137 in the South China Sea continuously increases up to 3% by 4 years,while the impact strength of Cesium-137 in the west coast of America is as high as 4% due to the role of strong Kuroshio-extension currents as a major transport mechanism of nuclear pollutants for that area.
HAN GuiJunLI WeiFU HongLiZHANG XueFengWANG XiDongWU XinRongZHANG LianXin
We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs), Simulating WAves Nearshore (SWAN) wave model, and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW, taking 14% of the direct wind energy rate input. Considering the Stokes drift effects, the total mechanical energy rate input was increased by approximately 14%, which highlights the importance of CSF in modulating the upper ocean circulation. The actual run conducted in Taiwan Adjacent Sea (TAS) shows that: 1) CSF-based wave-current coupling has an impact on ocean surface currents, which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree, 3.75% on average.
Oceanic front, especially Kuroshio front, is an important phenomenon that is of great significance for scientific research, national economy and military uses. However, Kuroshio front to the east of Taiwan (KFETW in brief) was rare investigated. In this study, reanalysis method is used to study the KFETW's temporal and spatial variability and frontogenesis mechanism. It is found that although surface thermal front to the east of Taiwan is not obvious, there is an all-year strong Kuroshio thermal front called KFETW under the surface. The KFETW is connected to the south section of Kuroshio front in the East China Sea (KFECS in brief) and distributes along the east coastline of Taiwan. The KFETW has multi-scale variation feature. It has significant seasonal signal, and its intensity and width reach their maximum in summer. By using the reanalysis results obtained from this study, frontogenesis and changing mechanisms of the KFETW are discussed. It is found that both the Kuroshio and up-welling to the east of Taiwan can affect this front, and the up-welling may be the predominant factor in KFETW's frontogenesis and maintenance mechanism.