A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.
We consider a modified Markov branching process incorporating with both state-independent immigration-migration and resurrection. The effect of state-independent immigration-migration is firstly in- vestigated in detail. The explicit expressions for the extinction probabilities and mean extinction times are presented. The ergodicity and stability properties of the process incorporating with resurrection structure are then investigated. The conditions for recurrence, ergodicity and exponential ergodicity are obtained. An explicit expression for the equilibrium distribution is also presented. As a preparation, the criteria for regularity and uniqueness for such structure are firstly established.
We consider decay properties including the decay parameter, invariant measures, invariant vectors, and quasistationary distributions for n-type Markov branching processes on the basis of the 1-type Markov branching processes and 2-type Markov branching processes. Investigating such behavior is crucial in realizing life period of branching models. In this paper, some important properties of the generating functions for n-type Markov branching q-matrix are firstly investigated in detail. The exact value of the decay parameter λC of such model is given for the communicating class C = Zn+ \ 0. It is shown that this λC can be directly obtained from the generating functions of the corresponding q-matrix. Moreover, the λC -invariant measures/vectors and quasi-distributions of such processes are deeply considered. λC -invariant measures and quasi-stationary distributions for the process on C are presented.