In recent years,a series of papers about cover-avoiding property of subgroups appeared and all the studies were connected with chief factors of a finite group.However,about the cover-avoiding property of subgroups for non-chief factor,there is no study up to now.The purpose of this paper is to build the theory.Let A be a subgroup of a finite group G and Σ:G0≤G1≤…≤Gn some subgroup series of G.Suppose that for each pair(K,H) such that K is a maximal subgroup of H and G i 1 K < H G i for some i,either A ∩ H = A ∩ K or AH = AK.Then we say that A is Σ-embedded in G.In this paper,we study the finite groups with given systems of Σ-embedded subgroups.The basic properties of Σ-embedded subgroups are established and some new characterizations of some classes of finite groups are given and some known results are generalized.
Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded in G if for each prime p dividing │H│, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G; H is called c^*-quasinormally embedded in G if there is a subgroup T of G such that G = HT and HCqT is s-quasinormally embedded in G. We investigate the influence of c^*-quasinormally embedded subgroups on the structure of finite groups. Some recent results are generalized.