In this paper, with the help of spectral integral, we show a quantitative version of the Bishop-Phelps theorem for operators in complex Hilbert spaces. Precisely, let H be a complex Hilbert space and 0 〈 s 〈 1/2. Then for every bounded linear operator T : H → H and x0 ∈ H with ||T|| = 1 = ||xo|| such that ||Txo|| 〉 1-6, there exist xε ∈ H and a bounded linear operator S : H → H with ||S|| = 1 = ||xε|| such that ||Sxε||=1, ||x-ε0||≤√2ε+4√2ε, ||S-T||≤√2ε.