An effective L-cysteine-assisted synthetic route has been successfully developed to prepare copper gallium sulfide(CuGaS2) microspheres under solvothermal conditions with CuCI2.2HzO, GaC13 and L-cysteine as source materials, in which L-cysteine was used as the sulfide source and complexing molecule. The experiments revealed that the synthesized sample was of a typical CuGaS2 tetragonal structure. Moreover, the prepared CuGaS2 crystals consisting of microspheres made up of nanoflakes, and the diameter of the nanoflakes was about 20 nm. Raman spectrum of the obtained CuGaS2 exhibits a high-intensity peak of the A1 mode at 306 cm^-1. Meanwhile, a possible growth mechanism was proposed based on the investigations.
A simple biomolecule-assisted synthetic route has been successfully developed to prepare bismuth sulfide(Bi 2 S 3 ) nanorods under solvothermal conditions.In the synthetic system,pentahydrate bismuth nitrate was employed to supply Bi source and L-cystine was used as sulfide source and complexing agent.The morphology,structure,and phase composition of the as-prepared Bi 2 S 3 products were characterized by X-ray diffraction(XRD),energy dispersion spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),selected area electron diffraction(SAED),and high-resolution transmission electron microscopy(HRTEM).The experimental results show that the nanorods have uniform diameter of 100-200 nm and length of 2-4 μm.The possible formation mechanism for the bismuth sulfide nanorods was discussed.