The application of a high purity Germanium (HPGe) γ spectrometer in determining the fuel element burnup in a future reactor is studied. The HPGe detector is exposed by a 60Co source with varying irradiation rate from 10× 103m s-1 to 150× 103m s-1 to simulate the input counting rate in real reactor environment. A 137Cs and a 152Eu source are positioned at given distances to generate a certain event rate in the detector with the former being proposed as a labeling nuclide to measure the burnup of a fuel element. It is shown that both the energy resolution slightly increasing with the irradiation rate and the passthrough rate at high irradiation level match the requirement of the real application. The influence of the background is studied in the different parameter sets used in the specially developed procedure of background subtraction. It is demonstrated that with the typical input irradiation rate and 137Cs intensity relevant to a deep burnup situation, the precision of the 137Cs counting rate in the current experiment is consistently below 2.8%, indicating a promising feasibility of utilizing an HPGe detector in the burnup measurement in future bed-like reactors.
Online fuel pebble burnup measurement in a future high temperature gas cooling reactor is proposed for implementation through a high purity germanimn (HPGe) gamma spectrometer. By using KORIGEN software and MCNP Monte Carlo simulations, the single pebble gamma radiations to be recorded in the detector are simulated under different, irradiation histories. A specially developed algorithm is applied to analyze the generated spectra to reconstruct the gamma activity of the ~arCs monitoring nuclide. It is demonstrated that by taking into account the intense interfering peaks, the 137Cs activity in the spent pebbles can be derived with a standard deviation of 3.0% (l(r). The results support the feasibility of utilizing the HPGe spectrometry in the online determination of the pebble burimp in future modular pebble bed reactors.
The possibility of the experiment for constraining the symmetry energy Esym(ρ) at supra-densities via π^-/π^+ probe on the external target experiment of phase I ( ETE(I) ) with part coverage at forward angle at HIRFL-CSR is studied for the first time by using the isospin and momentum dependent hadronic transport model IBUU04. Based on the transport simulation with Au+Au collisions at 400 MeV/u, it is found that the differential π^-/π^+ ratios are more sensitive to Esym(ρ) at forward angles in laboratory reference, compared with the total yield ratio widely proposed. The insufficient coverage at lower transverse momentum maintains the sensitivity of the dependence of π^-/π^+ ratio on the Esym(ρ) at high density, indicating that the ETF (I) under construction in Lanzhou provides the possibility of performing the experiment for probing the asymmetric nuclear equation of state.