Trace amounts of iron were determined by flow injection catalytic kinetic spectrophotometry,based on the catalytic effects of iron on the redox reaction between potassium bromate and 4,4′-tetramethyldiaminodiphenylmethane in the presence of potassium iodide in HAc-NaAc buffer solution.The measurements were conducted at 602nm of an unstable blue product of the reaction.Flow injection technique was utilized to precisely control the timing of merging and reaction of the reagents and samples.A stopped-flow approach was used to improve the sensitivity of the system.A detection limit of 2.6×10-9g/mL was achieved at a sampling frequency of 45/h.Calibration graphs were linear for ranges of 0~0.4mg/L for Fe(III).The proposed method was validated by the analysis of a national reference material and applied to the analyses of several water samples,with recoveries of 95.9%to 97.3%.
This work demonstrated the feasibility of detecting hydrocortisone in cosmetics using a novel CdSe/CdS quan- tum dots-based competitive fluoroimmunoassay with magnetic core/shell Fe3Oa/Au nanoparticles (MCFN) as solid carriers. Hydrocortisone antigen was labeled with the synthesized core/shell CdSe/CdS quantum dots (QDs) to form the antigen-QDs conjugate. Meanwhile, hydrocortisone antibody was incubated with MCFN and the immobilized antibody was obtained. The immobilized antibody was then mixed sequentially with hydrocortisone and a slightly excess amount of the QDs-labeled hydrocortisone antigen, allowing their competition for binding with the antibody immobilized on MCFN. The bound hydrocortisone and the antigen-QDs conjugates on MCFN were removed subsequently after the mixture was applied to a magnetic force. The analyte concentration was obtained by measuring the fluorescence intensity of the unbound hydrocortisone antigen-QDs conjugates. The proposed method was characterized by simplicity, rapidity, and high sensitivity with a wide linear working range of 0.5 to 15000 pg·mL^-1 and a low detection limit of 0.5 pg.mL^- 1. The proposed method was successfully applied to the determination of hydrocortisone in cosmetics with satisfactory results.
CdSe/CdS quantum dots (QDs) functionalized by thiourea (TU) were synthesized and used as a fluorescent sensor for mercury ion detection. The TU-functionalized QDs were prepared by bonding TU via electrostatic interaction to the core/shell CdSe/CdS QDs after capping with thioglycolic acid (TGA). It was observed that the fluorescence of the functionalized QDs was quenched upon the addition of Hg^2+. The quantitative detection of Hg^2+ with this fluorescent sensor could be conducted based on the linear relationship between the extent of quenching and the concentration of Hg^2+ added in the range of 1-300 μg.L^-1, A detection limit of 0.56 μg.L^-1 was achieved. The sensor showed superior selectivity for Hg^2+ and was successfully applied to the determination of mercury in environmental samples with satisfactory results
In this study,the preparation of a new kind of magnetic and luminescent Fe3O4/CdTe nanocomposites was demonstrated. Superparamagnetic Fe3O4 nanoparticles were first synthesized by hydrothermal coprecipitation of ferric and ferrous ions,followed by the modification of their surfaces with tetramethylammonium hydroxide(TMAOH) and the chemical activation with aspartic acid.The surface-modified Fe3O4 nanoparticles were then covalently coated with CdTe quantum dots(QDs),which were modified with mercaptoacetic acid(MPA),to form the Fe3O4/CdTe magnetic and luminescent nanocomposites through the coordination of the amino groups on the surfaces of Fe3O4 and the carboxyl groups on CdTe QDs.The structure and properties of as-synthesized nanocomposites were characterized.It was indicated that the nanocomposites possessed structure with an average diameter of 40- 50 nm,yellow-green emission feature and room temperature ferro-magnetism.Both the fluorescence and UV-vis absorption spectra of the nanocomposites showed a blue shift comparing with those of CdTe QDs.The mechanism of the blue shift was presented.The nanocomposites retained the ferromagnetic property with a saturation magnetization of 8.9 emu/g.
A simple and selective method for the determination of silver ions was developed by utilizing the red- shift in emission wavelength of the core-shell CdSe/Cd5 quantum dots (QDs) functionalized with rhodanine upon the addition of Ag+. A linear relationship was observed between the shift and the increase in concentration of Ag+ in the range of 0.0125-12.5 μmol/L. The mechanism of the red-shift was investigated and suggested that the coordination between Ag+ and rhodanine on the QDs surface caused an increase of particle size, which resulted in the red-shift of the QDs' emission wavelength. A detection limit of 2 nmol/L was achieved. The developed method showed superior selectivity and was successfully applied to the determination of silver in environmental samples.