Detailed radiolarian biostratigraphy in the Plio-Pleistocene was analyzed by using samples from IODP Site U1340 that was drilled to a core depth of 604 m in the southern Bering Sea.A total of 227 species belonging to 102 genera were identified.Based on the distributions of the radiolarian index species at Site U1340,five radiolarian zones since the Pliocene were established in the southern Bering Sea for the first time,and 25 radiolarian bioevents were recognized.Their ages were estimated on the basis of the age-depth plot that was constructed by the synthetical datum of the effective biostratigraphic and magnetostratigraphic events.The radiolarian zones at Site U1340 were systematically compared with those in its adjacent regions since the late Early Pliocene,which further improved and interpreted the biostratigraphic datum as well as their correlations in the middle-high latitude of the North Pacific.In addition,the comparative results of radiolarian zones show that Botryostrobus aquilonaris Zone emended in this paper is equivalent to the upper part of the same zone defined by Hays,1970,and Druppatractus irregularis-Dorydruppa bensoni Zone as well as Spongodiscus sp.Zone,newly proposed in this paper,are well correlated with Cycladophora sakaii Zone and Stylatractus universus Zone in the subarctic North Pacific,respectively.
Clay mineral assemblages and crystallinities in sediments from IODP Site 1340 in the Bering Sea were analyzed in order to trace sediment sources and reconstruct the paleoclimatic history of the Bering Sea since Pliocene (the last -4.3 Ma). The re- sults show that clay minerals at Site U1340 are dominated by illite, with a moderate amount of smectite and chlorite, and minor kaolinite. Sediment source studies suggest that the clay mineral assemblages and their sources in the studied core are controlled primarily by the climate conditions. During the warm periods, clay minerals originated mainly from the adjacent Aleutian Is- lands, and smectite/(illite+chlorite) ratios increased. During the cold periods, clay minerals from the Alaskan region distinctly increased, and smectite/(illite+chlorite) ratios declined. Based on smectite/(illite+chlorite) ratios and clay mineral crystallinities the evolutionary history of the paleoclimate was revealed in the Bering Sea. In general, the Bering Sea was characterized by warm and wet climate condition from 4.3 to 3.94 Ma, and then cold and dry condition associated with the enhanced volcanism from 3.94 to 3.6 Ma. Thereafter, the climate gradually became cold and wet, and then was dominated by a cold and dry condi- tion since 2.74 Ma, probably induced by the intensification of the Northern Hemisphere Glaciation. The interval from 1.95 to 1.07 Ma was a transitional period of the climate gradually becoming cold and wet. After the middle Pleistocene transition (1.07 to 0.8 Ma), the Bering Sea was governed mainly by cold and wet climate with several intervals of warm climate at -0.42 Ma (MIS 11), -0.33 Ma (MIS 9) and ~0.12 Ma (MIS 5), respectively. During the last 9.21 ka (the Holocene), the Bering Sea was characterized primarily by relatively warm and wet climatic conditions.
ZHANG QiangCHEN MuHongLIU JianGuoYU ZhaoJieZHANG LanLanXIANG Rong