国家高技术研究发展计划(2005AA738011)
- 作品数:2 被引量:6H指数:2
- 相关作者:王晨房建成更多>>
- 相关机构:北京航空航天大学更多>>
- 发文基金:教育部“新世纪优秀人才支持计划”国家高技术研究发展计划更多>>
- 相关领域:航空宇航科学技术电子电信更多>>
- 基于Unscented四元数粒子滤波的微小卫星姿态估计被引量:3
- 2007年
- 针对基于微小卫星姿态确定系统精度低和噪声存在非高斯分布的情况,研究了适用于该定姿系统的Unscented粒子滤波(UPF,Unscented Particle Filter)算法.UPF方法结合了Unscented卡尔曼滤波(UKF,Unscented Kalman Filter)与粒子滤波(PF,Particle Filter)的特点,用UKF得到PF的重要采样函数,从而克服了PF没有考虑最新量测信息、扩展卡尔曼滤波(EKF,Extended Kalman Filter)和UKF只能应用到噪声为高斯分布的不足.以MEMS(Mi-cro Electronic Mechanical System)陀螺和CMOS APS(Complementary Metal Oxide Semiconductor Active Pixel Sensors)星敏感器为姿态敏感器件,将UPF与基于误差四元数的卫星姿态运动学方程结合,构建了UPF定姿滤波器,并用MEMS陀螺采集的随机噪声数据进行了半物理仿真,对其特性进行了分析与比较.仿真比较结果表明:在敏感器精度较差并且系统噪声非高斯分布的情况下,这种基于UPF的姿态估计方法在计算粒子数目相对于PF较少的情况下,可以取得比UKF更好的滤波精度,从而有效地提高了定姿性能.
- 王晨房建成
- 关键词:陀螺矢量观测
- 基于UPF滤波的微小航天器姿态矩阵估计方法被引量:3
- 2008年
- 针对基于惯性-星光姿态确定系统噪声存在非高斯分布的情况,提出了将离散粒子滤波(UPF)方法应用于定姿系统滤波器设计,该方法用离散卡尔曼滤波(UKF)得到粒子滤波的重要采样函数,从而克服扩展卡尔曼滤波(EKF)和UKF只能应用到噪声为高斯分布的不足。文章以微机电系统(MEMS)陀螺和互补性金属氧化物半导体有源像素图像传感器(CMOS APS)星敏感器为姿态敏感器件,选取基于矢量观测的最小参数姿态矩阵估计方法为定姿算法,提出将UPF与最小参数姿态矩阵估计方法结合,设计了一种针对微小航天器的UPF姿态估计器,采用从MEMS陀螺采集的数据进行了半物理仿真并对其特性进行了分析与比较。仿真比较结果表明:在敏感器精度较差并且系统噪声非高斯分布的情况下,这种基于UPF的姿态估计方法可以取得比EKF和UKF更快的滤波收敛性和更好的滤波精度,有效地提高了定姿性能。
- 王晨房建成