Considering an insurer who is allowed to make risk-free and risky investments, as in Tang et al.(2010), the price process of the investment portfolio is described as a geometric L′evy process. We study the tail probability of the stochastic present value of future aggregate claims. When the claim-size distribution is of extended regular variation, we obtain an asymptotically equivalent formula which holds uniformly for all time horizons, and furthermore, the same asymptotic formula holds for the finite-time ruin probabilities. The results extend the works of Tang et al.(2010).
In this paper, Kolmogorov-type inequality for negatively superadditive dependent (NSD) random variables is established. By using this inequality, we obtain the almost sure convergence for NSD sequences, which extends the corresponding results for independent sequences and negatively associated (NA) sequences. In addition, the strong stability for weighted sums of NSD random variables is studied.