Synergistic effects of pulsed DC dielectric barrier discharge (DBD) plasma and Indium modified HZSM-5 (In/HZSM-5) catalyst for C2H2 selective reduction of NOx at 200℃, in the presence of enriched oxygen by using a one-stage plasma-over-catalyst (POC) reactor, are reported. With a reactant gas mixture of 480 ppm NO, 500 ppm C2H2, 13.0% O2 in N2 and gas hourly space velocity (GHSV) = 10000 h^-1, pure catalytic, pure plasma-induced (discharges over fused silica pellets) and plasma-catalytic NOx conversion percentages are 45.0%, 4.0% and 92.2%, respectively. NOx conversion rates and energy costs were also compared for pulsed DC DBD and AC DBD reactors.
This paper reports observations of significant synergistic effects between dielectric barrier discharge (DBD) plasmas and Cu-ZSM-5 catalysts for C2H4 selective reduction of NOx at 250 °C in the presence of excess oxygen by using a one-stage plasma-over-catalyst (POC) reactor. With the reactant gas mixture of 530 ppm NO, 650 ppm C2H4, 5.8% O2 in N2 and GHSV = 12000 h-1, the pure catalytic, pure plasma-induced (discharges over fused silica pellets) and plasma- catalytic (in the POC reactor) NOx conversion are 39%, 1.5% and 79%, respectively. The in-situ optical emission spectra of the reactive systems imply some short-lived active species formed from plasma-induced and plasma-catalytic processes may be responsible to the observed synergistic effects in this one-stage POC system.