您的位置: 专家智库 > >

国家自然科学基金(11172207)

作品数:5 被引量:5H指数:1
相关作者:陆娟张梦雪潘君更多>>
相关机构:重庆大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:理学生物学文化科学医药卫生更多>>

文献类型

  • 5篇期刊文章
  • 4篇会议论文

领域

  • 5篇医药卫生
  • 2篇理学
  • 1篇生物学
  • 1篇文化科学

主题

  • 3篇细胞
  • 2篇电耦合
  • 2篇多孔支架
  • 2篇三维多孔支架
  • 2篇生物材料
  • 2篇细胞生长
  • 2篇力电耦合
  • 2篇环境影响
  • 2篇HELICA...
  • 2篇CHIRAL
  • 1篇应力
  • 1篇软骨
  • 1篇软骨分化
  • 1篇细胞分化
  • 1篇流体剪应力
  • 1篇剪应力
  • 1篇分化
  • 1篇干细胞
  • 1篇干细胞分化
  • 1篇NUMERI...

机构

  • 4篇清华大学
  • 4篇天津大学
  • 1篇重庆大学

作者

  • 2篇冯西桥
  • 2篇王建山
  • 2篇崔玉红
  • 1篇潘君
  • 1篇张梦雪
  • 1篇陆娟

传媒

  • 2篇第十届全国生...
  • 1篇医用生物力学
  • 1篇Transa...
  • 1篇Acta M...
  • 1篇Acta M...
  • 1篇Theore...

年份

  • 1篇2019
  • 1篇2018
  • 1篇2016
  • 1篇2015
  • 1篇2014
  • 4篇2012
5 条 记 录,以下是 1-9
排序方式:
生物材料中的手性传递
手性一词,源于古希腊词"cheir"(手的意思),是指一个点群或几何构型与其镜像不能通过平移或旋转等对称性操作互相重合的几何属性。很多生物材料或系统都具有多级手性,如纸条的扭转带、生物丝的螺旋结构、高分子片晶、人的身体等...
王建山冯西桥崔玉红
Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow被引量:1
2015年
Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor-ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress) and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor-ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.
Yu DuShuang PengYuhong CuiShouqin LüYan ZhangMian Long
不同速度增加的剪应力对干细胞分化的调节
2019年
间充质干细胞(MSCs)在创伤或化学物质刺激后会被招募到肌肉骨骼系统中,在微环境的刺激下分化为骨或软骨细胞。流体剪切应力(FSS)在肌肉骨骼系统中对组织的发育、功能以及修复至关重要。前期的研究表明不同速度增加的FSS通过调节阳离子选择性通道(MSCC),细胞内钙水平和F-actin可以刺激MSCs向不同方向分化。0-0’促进MSC朝软骨向分化,相比之下,0-2’促进MSCs朝成骨向分化,0-20’引起适度的成骨和软骨形成表型(0-0’、0-2’、0-20’分别表示从静置后的0 min,在0、2和20 min内剪应力大小以线性速度从0 dyn/cm^2增加到10 dyn/cm^2)。此外,还发现20 min FSS的分化效果与5 d的化学刺激和2 d的硬度基底诱导相当,证明FSS是MSCs分化控制的有效调节手段。在本研究中继续对FSS调控MSCs分化的机制进行研究。发现0-0’和0-2’处理组Lamin A的表达量最高,0-20’处理组最低。当用siRNA将Lamin A的表达降低后发现,成骨分化的关键转录因子runx2的表达没有变化,但是软骨细胞分化的关键转录因子sox9的表达量显著降低。本研究表明,MSCs对不同的FSS具有极高的敏感度,这为训练骨质疏松症和骨关节炎患者提供参考依据。
岳丹阳陆娟张梦雪白玉英潘君
关键词:流体剪应力成骨分化软骨分化
Numerical Study on Helical Fiber Fragmentation in Chiral Biological Materials被引量:1
2018年
Chiral microstructures exist widely in natural biological materials such as wood, bone, and climbing tendrils. The helical shape of such microstructures plays an important role in stress transfer between fiber and matrix,and in the mechanical properties of biological materials. In this paper, helical fiber fragmentation behavior is studied numerically using the finite-element method(FEM), and then, the effects of helical shape on fiber deformation and fracture,and the corresponding mechanical mechanisms are investigated. The results demonstrate that, to a large degree, the initial microfibril angle(MFA) determines the elastic deformation and fracture behavior of fibers. For fibers with a large MFA, the interfacial area usually has large values, inducing a relatively low fragment density during fiber fragmentation. This work may be helpful in understanding the relationship between microstructure and mechanical property in biological materials, and in the design and fabrication of bio-inspired advanced functional materials.
Jianshan WangLi YuanLixin WangYuhong CuiQinghua Qin
关键词:CHIRALHELICALFIBERFIBERFRAGMENTATIONDEFORMATION
力电耦合对三维多孔支架中细胞生长环境影响初探
骨器官一些部位受外力作用后所产生的微小变形或微缺损都可致使骨小管液的流动。骨小管液的流动产生剪切应力和流动电压,使骨细胞产生电位变化或激活其表面感受器,在骨细胞内发生生物学反应,通过多孔的骨组织传递到骨表面的骨衬细胞,进...
崔玉红马月聪李文娇
力电耦合对三维多孔支架中细胞生长环境影响初探
<正>骨器官一些部位受外力作用后所产生的微小变形或微缺损都可致使骨小管液的流动。骨小管液的流动产生剪切应力和流动电压,使骨细胞产生电位变化或激活其表面感受器,在骨细胞内发生生物学反应,通过多孔的骨组织传递到骨表面的骨衬细...
崔玉红马月聪李文娇
文献传递
Self-shaping of bioinspired chiral composites被引量:1
2014年
Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of selfshaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.
Qing-Qing RongYu-Hong CuiTakahiro ShimadaJian-Shan WangTakayuki Kitamura
生物材料中的手性传递
<正>手性一词,源于古希腊词'cheir'(手的意思),是指一个点群或几何构型与其镜像不能通过平移或旋转等对称性操作互相重合的几何属性。很多生物材料或系统都具有多级手性,如纸条的扭转带、生物丝的螺旋结构、高分子片晶、人的...
王建山冯西桥崔玉红
文献传递
Helical Fiber Pull-out in Biological Materials被引量:2
2016年
Many biological materials, such as wood and bone, possess helicoid microstructures at microscale, which can serve as reinforcing elements to transfer stress between crack surfaces and improve the fracture toughness of their composites. Failure processes, such as fiber/matrix inter- face debonding and sliding associated with pull-out of helical fibers, are responsible mainly for the high energy dissipation needed for the fracture toughness enhancement. Here we present systemic analyses of the pull-out behavior of a helical fiber from an elastic matrix via the finite element method (FEM) simulation, with implications regarding the underlying toughening mechanism of helicoid microstructures. We find that, through their uniform curvature and torsion, helical fibers can provide high pull-out force and large interface areas, resulting in high energy dissipation that accounts, to a large extent, for the high toughness of biological materials. The helicity of fiber shape in terms of the helical angle has significant effects on the force-displacement relationships as well as the corresponding energy dissipation during fiber pull-out.
Lixin WangYuhong CuiQinghua QinHui WangJianshan Wang
共1页<1>
聚类工具0