Attaining high activity with high selectivity at low temperature is challenging in the selective hydrogenation of phenol to cyclohexanone due to its high activation energy (Ea, 55-70 kJ/mol). Here we report a simple and efficient strategy for phenol hydrogenation catalyzed by Pd in aqueous phase at 30 ℃ by introducing air to promote the catalysis. With the assistance of air, 〉99% conversion and 〉99% selectivity were achieved over Pd(111)/Al2O3 with an overall turnover frequency (TOF) of 621 h-1, -80 times greater than that of the state-of-art Pd catalyst at 30 ℃. Mechanism studies revealed that phenol was activated to generate phenoxyl radicals. The radicals were yielded from the reaction between phenol and hydroxyl radicals in the presence of hydrogen, oxygen and protic solvent on Pd. The phenoxyl pathway resulted in a low apparent Ea (8.2 kJ/mol) and thus high activity. More importantly, this strategy of activating substrate by air can be adapted to other Pd based catalysts, offering a new thinking for the rational design of cyclohexanone production in industry.
In wet chemical syntheses of noble metal nanocrystals,surfactants play crucial roles in regulating their morphology.To date,more attention has been paid to the effect of the surfactant on the surface energy of crystal facets,while less attention has been paid to its effect on the growth kinetics.In this paper,using the growth of Au-Pd alloy nanocrystals as an example,we demonstrate that different concentration of surfactant hexadecyltrimethyl ammonium chloride(CTAC)may cause the different packing density of CTA+bilayers on different sites(face,edge or vertex)of crystallite surface,which would change the crystal growth kinetics and result in preferential crystal growth along the edge or vertex of crystallites.The unique shape evolution from trisoctahedron to excavated rhombic dodecahedron and multipod structure for Au-Pd alloy nanocrystals was successfully achieved by simply adjusting the concentration of CTAC.These results help to understand the effect of surfactants on the shape evolution of nanocrystals and open up avenues to the rational synthesis of nanocrystals with the thermodynamically unfavorable morphologies.
The catalytic properties of noble metal nanocrystals can be tuned via engineering their structures. Nanocrystals with fractal structures are fascinating catalysts regarding their large surface area-to-volume ratios, large numbers of edges and corners, which can be tuned simultaneously by their hierarchical ordering. However, it is still a great challenge to control the hierarchical ordering of noble metal fractal nanocrystals and their formation mechanism is not fully understood. Herein, we report a facile solvothermal method for the direct preparation of a unique single-crystal Rh-hyperbranched structure, which consists of hierarchically ultrathin nanoplates with threefold symmetry, large surface area and high density of low-coordinated edge/corner sites.Importantly, the hierarchical ordering can be readily tuned by changing the composition of solvent. In addition, we found the as-prepared single-crystal hyperbranched Rh nanoplates possessed great structure stability, and exhibited better catalytic performance towards both ethanol electrooxidation and hydrogenation of styrene than the commercial Rh black, which can be attributed to the large surface area and high-dentisty of edge/corner sites.
Surface structure control of functional nano-/micro-crystallites has attracted great attention because many important physicochemical properties depend on their surface. Guided by the supersaturation-dependent surface structure evolution strategy we proposed recently, NaTaO3 submicrometer crystals with morphologies of cubes, corner truncated cubes, edge and corner truncated cubes, and quasi-spheres can be synthesized by changing the volume ratio of ethylene glycol to water and the amount of NaOH in the composite solvent. Under low supersaturation condition, NaTaO3 cubic crystals with low energy {100} facets were obtained. As the supersaturation increases, the corners and edges of NaTaO3 cubic crystals, which possess higher surface energy, were gradually truncated. Surprisingly, quasi-sphere crystallites formed under extremely high supersaturation condition, which is difficult to be explained by the classical crystal growth theories. By analyzing the formation work of two-dimension crystal nuclei, we concluded that the crystal growth tend to be isotropic at extremely high supersaturation, which well explained the formation of the quasi-sphere crystallites.
Atomically dispersed catalysts have shown promising prospects in catalysis studies.Among all of the developed methods for synthesizing atomically dispersed catalysts,the photochemical approach has recently aroused much attention owing to its simple procedure and mild preparation conditions involved.In the present study,we demonstrate the application of the photochemical method to synthesize atomically dispersed Pd catalysts on(001)‐exposed anatase nanocrystals and commercial TiO2(P25).The as‐prepared catalysts exhibit both high activity and stability in the hydrogenation of styrene and catalytic oxidation of CO.
Seed-mediated growth is the most general way to controllably synthesize bimetal nano-heterostructures. Despite successful instances through trial and error were reported, the way for second metal depositing on the seed. namely whether the symmetry of resulted nano-heterostructure follows the original crystal symmetry of seed metal, remains an unpredictable issue to date. In this work, we propose that the ther- modynamic factor, i.e., the difference of equilibrium electrochemical potentials (corresponding to their Fermi levels) of two metals in the growth solution, plays a key role for the symmetry breaking of bimetal nano-heterostructures during the seed-mediated growth. As a proof-of-principle experiment, by revers- ing the relative position of Fermi levels of the Pd nanocube seeds and the second metal Au with changing the concentration of reductant (L-ascorbic acid) in the growth solution, the structure of as-prepared prod- ucts successfully evolved from centrosymmetric Pd@Au core-shell trisoctabedra to asymmetric Pd-Au hetero-dimers. The idea was further demonstrated by the growth of Ag on the Pd seeds. The present work intends to reveal the origin of symmetry breaking in the seed-mediated growth of nano-heterostructures from the viewpoint of thermodynamics, and these new insights will in turn help to achieve rational con- struction of bimetal nano-heterostructures with soecific functions.