您的位置: 专家智库 > >

国家自然科学基金(1212321013019)

作品数:1 被引量:22H指数:1
发文基金:国家自然科学基金更多>>
相关领域:天文地球更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇天文地球

主题

  • 1篇DIORIT...
  • 1篇GABBRO
  • 1篇GEOCHE...
  • 1篇MAGMAT...
  • 1篇MASSIF
  • 1篇PERMIA...

传媒

  • 1篇Acta G...

年份

  • 1篇2011
1 条 记 录,以下是 1-1
排序方式:
Permian Tectonic Evolution in Southwestern Khanka Massif:Evidence from Zircon U-Pb Chronology,Hf isotope and Geochemistry of Gabbro and Diorite被引量:22
2011年
Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating and geochemical data for the Permian gabbros and diorites in the Hunchun area are presented to constrain the regional tectonic evolution in the study area. Zircons from gabbro and diorite are euhedral-subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios (0.26-1.22), implying their magmatic origin. The dating results indicate that the gabbro and diorite formed in the Early Permian (282-2 Ma) and in the Late Permian (255-3 Ma), respectively. In addition, the captured zircons with the weighted mean age of 279-4 Ma are also found in the diorite, consistent with the formation age of the gabbro within uncertainty. The gabbros belong chemically to low-K tholeiitic series, and are characterized by low rare earth element (REE) abundances, fiat REE pattern, weak positive Eu anomalies (JEu), and depletion in high field strength elements (HFSEs, Nb, Ta, and Ti), similar to the high-aluminum basalts from island arc setting. Initial Hf isotopic ratios of zircons from the gabbro range from +7.63 to +14.6, suggesting that its primary magma could be mainly derived from partial melting of a depleted lithospheric mantle. The diorites belong to middle K calc-alkaline series. Compared with the gabbros, the diorites have higher REE abundance, weak negative Eu anomalies, and more depletion in HFSEs (Nb, Ta, and Ti), similar chemically to the volcanic rocks from an active continental margin setting. Initial Hf isotopic ratios and Hf two-stage model ages of zircons from the diorite range from +11.22 to +14.17 and from 424 to 692 Ma, respectively, suggesting that its primary magma could be mainly derived from partial melting of the Early Paleozoic and/or Neoproterozoic accretted lower crust. Taken together, it is suggested that geochemical variations from the Early Permian gabbros to the Late Permian diorites reveal that the subduction of the Paleo-Asian oceanic plate beneat
CAO Huahua XU Wenliang PEI Fuping ZHANG Xingzhou
关键词:GEOCHEMISTRY
共1页<1>
聚类工具0