We report that La60Fe30Al10 metallic glass has clear,reproducible,periodic variation in its differential resistance as a function of a perpendicular magnetic field below its superconducting transition temperature. The oscillation period corresponds to a superconducting flux quantum. The observed phenomena originate from the Little-Parks-like resistance oscillations in the cylindrical La nanorod with a high aspect ratio and uniform orientation precipitated on the ribbon surface. The highly-oriented La nanocrystals prepared on a flexible glass substrate offer an opportunity for integrating numerous superconducting circuits into a single chip.
The microstructural characteristic of the misfit-layered compound PbTiS3 has been studied with transmission electron microscopy. All the incommensurate modulation-induced satellite spots and main diffraction spots of basic sublattices can be indexed systematically with a superspace group method. Finally, the relationship between the electronic transport properties and the crystal structure is discussed.