The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation(Qbj) ,Wuye formation(Qbw) ,Fanzhao formation(Qbf) and Gongdong formation(Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group.
LONG Xuan-lin1,ZHOU Jia-xi2,HUANG Zhi-long2,WANG Jing-song1,YANG De-zhi1,3,FAN Liang-wu2,BAO Guang-ping2,LIU Yong-kun1(1. The 102 Geological Team,Guizhou Bureau of Exploration and Development of Geology and Mineral Resources,Zunyi 563003,China
The Pb-Zn metallogenic district in NW Guizhou Province is an important part of the Yun-nan-Sichuan-Guizhou Pb-Zn metallogenic province, and also is one of the most important Pb-Zn producers in China. The hosting rocks of the Pb-Zn deposits are Devonian to Permian carbonate rocks, and the basement rocks are meta-sedimentary and igneous rocks of the Proterozoic Kunyang and Huili groups. The ore minerals are composed of sphalerite, galena and pyrite, and the gangue minerals are include calcite and dolomite. Geology and C-O isotope of these deposits were studied in this paper. The results show that δ13C and δ18O values of hydrothermal calcite, altered wall rocks-dolostone, sedimentary calcite and hosting carbonate rocks range from -5.3‰ to -0.6 ‰ (mean -3.4‰) and +11.3‰ to +20.9 ‰ (mean +17.2‰), -3.0‰ to +0.9 ‰ (mean -1.3‰) and +17.0‰ to +20.8‰ (mean +19.7‰), +0.6‰ to +2.5 ‰ (mean +1.4‰) and +23.4‰ to +26.5 ‰ (mean +24.6‰), and -1.8‰ to +3.9‰ (mean +0.7‰) and +21.0‰ to +26.8‰ (mean +22.9‰), respectively, implying that CO2 in the ore-forming fluids was mainly a result of dissolution of Devonian and Carboniferous carbonate rocks. However, it is difficult to evaluate the contribution of sediment de-hydroxylation. Based on the integrated analysis of geology, C and O isotopes, it is believed that the ore-forming fluids of these carbonate-hosted Pb-Zn deposits in this area were derived from multiple sources, including hosting carbonate rocks, Devonian to Permian sedimentary rocks and basement rocks (the Kun-yang and Huili groups). Therefore, the fluids mixing is the main precipitation mechanism of the Pb-Zn deposit in this province.