Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivated to propose a new monitoring method by compensating the principal component analysis with a weight approach.The proposed monitor consists of two tiers. The first tier uses the principal component analysis method to extract cross-correlation structure among process data, expressed by independent components. The second tier estimates auto-correlation structure among the extracted components as auto-regressive models. It is therefore named a dynamic weighted principal component analysis with hybrid correlation structure. The essential of the proposed method is to incorporate a weight approach into principal component analysis to construct two new subspaces, namely the important component subspace and the residual subspace, and two new statistics are defined to monitor them respectively. Through computing the weight values upon a new observation, the proposed method increases the weights along directions of components that have large estimation errors while reduces the influences of other directions. The rationale behind comes from the observations that the fault information is associated with online estimation errors of auto-regressive models. The proposed monitoring method is exemplified by the Tennessee Eastman process. The monitoring results show that the proposed method outperforms conventional principal component analysis, dynamic principal component analysis and dynamic latent variable.
One measurement-based dynamic optimization scheme can achieve optimality under uncertainties by tracking the necessary condition of optimality(NCO-tracking), with a basic assumption that the solution model remains invariant in the presence of all kinds of uncertainties. This assumption is not satisfied in some cases and the standard NCO-tracking scheme is infeasible. In this paper, a novel two-level NCO-tracking scheme is proposed to deal with this problem. A heuristic criterion is given for triggering outer level compensation procedure to update the solution model once any change is detected via online measurement and estimation. The standard NCO-tracking process is carried out at the inner level based on the updated solution model. The proposed approach is illustrated via a bioreactor in penicillin fermentation process.
For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used for dynamic process optimization.A new strategy is proposed for complex process optimization,in which latent variables are used as decision variables and statistics is used to describe constraints.As the constraint condition will be more complex by projecting the original variable to latent space,Hotelling T^2 statistics is introduced for constraint formulation in latent space.In this way,the constraint is simplified when the optimization is solved in low-dimensional space of latent variable.The validity of the methodology is illustrated in pH-level optimal control process and practical polypropylene grade transition process.