We fabricate a series of samples and OLEDs with organic multilayer quantum well structure, which consist of alternate PBD and Alqy Both PBD and Alq3 are electron-transporting materials, and PBD is used as potential barrier layer, while Alq3 is used as potential well layer and emitting layer. Compared with double-layer structure, the luminescent characteristics of organic samples and diodes with quantum well structure are investigated and the quantum well structure helps the energy transfer between well layer and barrier layer. The quantum well structure makes carriers disperse in the different well layers and then increases the number of excitons to enhance the efficiency of the recombination.
A novel rare earth complex of terbium ion with 2-benzoylbenzoic acid and 1, 10-phenathroline (Tb(o-BBA)3 (phen), o-BBA-2-benzoylbenzoic acid, phen = 1, 10-phenathroline) was used as an electroluminescent material for the first time. The Tb complex was blended with poly(N-vinylcarbazole) (PVK) in different weight ratios and spinn to coated into films (noted as PVK :Tb films). The photoluminescence (PL) properties of films were investigated and the optimum weight ratio between PVK and Tb(o-BBA)3(phen) was found to be 3:1. Monolayer devices with the structure ITO/PVK: Tb/AI were fabricated and emitted green light, which was characteristic of Tb^3+ emission. The results show that mecha- nisms for PL and EL are different. The PL is considered to be caused because of energy transfer and direct excitation to the Tb(o-BBA)3(phen) molecule, while EL is mainly on charging trapping.
The acceleration ability of electrons in SiO2 and ZnS was compared through the variation of emission intensity based on ZnS : Er electroluminescence during the reverse of polarity of sinusoidal voltage. In order to avoid the influence of work function of electrode, cathodal and anodal materials were ITO (indium tin oxide). The ratio of maximum emission intensity under positive and negative half period is 2.18. This result demonstrates that the electron acceleration ability of SiO2 is 2.18 times stronger than that of ZnS.