Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together, is modeled as a general spring-type layer. The mechanical displacements, and the electric and magnetic potentials of the two adjacent layers are assumed to be discontinuous at the interface. As an example, the influences of imperfect interfaces on the magnetoelectric (ME) coupling effects in an MF sandwich plate are investigated with the established 2D governing equations. Numerical results show that the imperfect interfaces have a significant impact on the ME coupling effects in MF laminated structures.
Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic structures that are usually not featured with notable band gaps. Endowed with chirality, the periodic structures here are able to undergo imperfection-insensitive large deformation under extension or compression. The influences of geometric parameters on band gaps are discussed via the nonlinear finite element method. It is shown that the band gaps in such structures with curved beams can be very rich and, more importantly, can be efficiently and robustly tuned by applying appropriate mechanical loadings without inducing buckling. As expected, geometry plays a more significant role than material nonlinearity does in the evolution of band gaps. The dynamic tunability of band gaps through mechanical loading is further studied. Results show that closing, opening, and shifting of band gaps can be realized by exerting real-time global extension or compression on the structure. The proposed periodic structure with well-designed chiral symmetry can be useful in the design of particular acoustic devices.
This paper investigates the static behavior of a functionally graded circular plate made of magneto-electro-elastic(MEE) materials under tension and bending.The analysis is directly based on the three-dimensional governing equations for magnetoelectro-elasticity, with the boundary conditions on the upper and lower surfaces satisfied exactly and those on the cylindrical surface satisfied approximately(in the Saint Venant sense). The analytical solutions, derived with a direct displacement method, are valid for any functionally graded material(FGM) with its properties varying independently in a continuous manner along the thickness direction. For homogeneous materials, these solutions are degenerated to the ones available in the literature. Interesting relations are also found between the solutions for a functionally graded magneto-electro-elastic(FGMEE) circular plate and those for an FGMEE rectangular beam, and even those for a functionally graded elastic beam when only the elastic displacements are considered. The beam solutions are also derived using a direct displacement method. Numerical examples are presented to verify the present analytical solutions, show the effects of material heterogeneity and multi-field coupling, and indicate the correspondence between the plate solutions and beam solutions.