国家自然科学基金(11162020) 作品数:12 被引量:22 H指数:3 相关作者: 化存才 袁娜 张林 强继业 杜勇 更多>> 相关机构: 云南师范大学 云南农业大学 保山学院 更多>> 发文基金: 国家自然科学基金 国家社会科学基金 更多>> 相关领域: 理学 交通运输工程 生物学 历史地理 更多>>
西南联大时期华罗庚的数论研究及其对国际数论发展的影响 2020年 西南联大时期的年轻教授华罗庚早年从事解析数论的研究工作,开创了国际间颇具盛名的“中国解析数论学派”,该学派对于质数分布问题与哥德巴赫猜想都做出了许多重大的贡献,对国际数论的发展也产生了深远的影响.新中国成立后,回国的华罗庚创建中国科学院数学研究所,培养出了世界知名的中国优秀数论研究人才陈景润、王元等.华罗庚不仅在遍及数学诸多领域产出了影响国际的研究成果,而且他的特殊学术思想和方法论已作为中华民族文化的一部分而载入史册. 和光珠 化存才关键词:解析数论 西南联大 Exact parametric representations of orbits defined by cubic Hamiltonian 被引量:1 2014年 In this paper,we show that for any given planar cubic algebraic curves defined by a quadratic Hamiltonian vector field,we can always have their exact explicit parametric representations. We use a model of micro-structured solid to show an application of our conclusions. Jibin Li高阶非线性惯性波模型的精确孤立波和周期波解(英文) 被引量:1 2018年 描述高阶非线性惯性波运动的模型是一个偏微分方程.用动力系统方法证明,存在系统的参数组,使得高阶非线性惯性波模型有精确的周期波解,亮孤子和暗孤子解. 李继彬关键词:周期波 精确解 拉梅系数与三阶雅可比行列式之间的关系 2012年 本文证明了拉梅系数和三阶的雅可比行列式之间存在的关系式|J|=HuHvHw,为三阶的雅可比行列式计算提供了简便的计算方法。 陈红菊关键词:雅可比行列式 正交曲线坐标系 含外力项时变系数KdV方程与时变系数耦合KdV方程组的孤子解 被引量:1 2014年 应用孤子拟解法研究了含外力项时变系数KdV方程与一类时变系数耦合KdV方程组.首先将方程经过变量代换转换为齐次方程,然后将孤子解假设为双曲正割函数的形式带入方程或方程组,最后借助Maple软件完成复杂的计算来确定假设的孤子解的待定系数,从而得到孤子解存在的条件及其孤子解.结果显示:孤子拟解法计算简便且能得到方程的亮孤子解. 杨绍杰 化存才关键词:KDV方程 耦合KDV方程组 变系数 多前车速度差的车辆跟驰模型的稳定性与孤波 被引量:8 2012年 通过线性稳定性分析,得到了多前车速度差模型的稳定性条件,并发现通过调节多前车信息,使交通流的稳定区域明显扩大.通过约化摄动方法研究了该模型的非线性动力学特性:在稳定流区域,得到了描述密度波的Burgers方程;在交通流的不稳定区域内,在临界点附近获得了描述车头间距的修正的Korteweg-de Vries(modified Korteweg-deVries,mKdV)方程;在亚稳态区域内,在中性稳定曲线附近获得了描述车头间距的KdV方程.Burgers的孤波解、mKdV方程的扭结-反扭结波解及KdV方程的孤波解描述了交通流堵塞现象. 袁娜 化存才关键词:跟驰模型 BURGERS方程 MKDV方程 KDV方程 含智能提示限速的全速度差模型的稳定性和孤立波 被引量:2 2020年 给出了含智能提示限速信息的速度差模型.通过稳定性分析导出了模型的稳定性条件,结果表明智能限速信息提示扩大了交通流的稳定区域,并对稳定性条件进行了3种精准分析.通过约化摄动方法在稳定区域导出Burgers方程,并给出其孤立波;在亚稳定区域内导出KdV方程,并给出其孤立波;在不稳定区域,导出mKdV方程,并给出其扭结-反扭结波解.根据孤立波解对交通流进行了相应的阐释. 曹芳 化存才关键词:智能交通 约化摄动法 孤立波 植物生长发育问题的微分方程建模 ——以番茄为例 蔬菜是人类的日常食品,关系着人类的生存和健康.提高蔬菜产量和品质的重要基础是植物的生长发育.建立有效的植物生长发育模型的研究前景广阔,这不仅可用于模拟和解释植物的生长发育,而且还可以用来预测和调控植物的生长状况.近年来,... 李德盛关键词:微分方程模型 植物生长发育 番茄 考虑限速的最优速度模型的稳定性与孤波 2019年 本文基于最优速度模型,设计了考虑驾驶员提前时间获知限速信息的交通流模型。利用线性稳定性分析方法,得到了模型的稳定性条件。表明限速信息的影响使得交通流的稳定区域有明显扩大。利用约化摄动法对模型进行分析,分别在稳定区域、亚稳态区域和不稳定区域导出密度波方程——Burgers方程、KdV方程和mKdV方程。通过Burgers方程、KdV方程的孤波解以及mKdV方程的扭结–反扭结波解描述了提前获知限速信息下的交通流堵塞现象。 和光珠 化存才关键词:限速 稳定性 密度波 一类同时含有时间和空间分数阶导数的非线性Schr?dinger方程的李群约化 分数阶Schr?dinger方程是一个具有很强应用背景的典型偏微分方程模型,目前已经获得了一些关于时间或者空间分数阶Schr?dinger的结果.例如有:在不同势下时间分数阶线性Schr?dingerr方程,空间分数阶线... 周春红; 化存才;关键词:群不变解 文献传递