In this paper, we provide a generalized block-by-block method for constructing block-by-block systems to solve the system of linear Volterra integral equations of the second kind, and then deduce some of the special cases. Compared with the expansion method and He's homotopy perturbation method, respectively numerical examples are given to certify the effectiveness of the method. The results show that the block-by-block method is very effective, simple, and of high accuracy in solving the system of linear Volterra integral equations of the second kind.
This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.