Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, there may exist a corresponding local fault in themachine, and if further extracting the periodic impulse components from the vibration signals, theseverity of the local fault can be estimated and tracked. However, the signal-to-noise ratios (SNRs)of the vibration acceleration signals are often so small that the periodic impulse components aresubmersed in much background noises and other components, and it is difficult or inconvenient for usto detect and extract the periodic impulse components with the current common analyzing methods forvibration signals. Therefore, another technique, called singular value decomposition (SVD), istried to be introduced to solve the problem. First, the principle of detecting and extracting thesignal periodic components using singular value decomposition is summarized and discussed. Second,the infeasibility of the direct use of the existing SVD based detecting and extracting approach ispointed out. Third, the approach to construct the matrix for SVD from the signal series is improvedlargely, which is the key program to improve the SVD technique; Other associated improvement is alsoproposed. Finally, a simulating application example and a real-life application example ondetecting and extracting the periodic impulse components are given, which showed that the introducedand improved SVD technique is feasible.