基于宁夏全区范围内24个常规气象站近53 a春季降水量资料和美国气候预测中心1961-2013年Nino1+2和Nino3.4月平均海平面温度指数资料及NCEP/NCAR北半球月平均500h Pa高度距平场再分析资料,采用经验正交函数分解(EOF)及滑动相关分析方法,对宁夏逐年春季降水量的空间分布进行分型,并分析了各空间分布型的时间演变特征,进一步研究了赤道中东太平洋关键区(Nino1+2、Nino3.4)海温是如何通过对西太平洋副高及500 h Pa中高纬大气环流的影响来影响宁夏的春季降水。结果表明:近53 a来,宁夏春季降水全区一致偏多或偏少分布型的占比超过70%,21世纪后全区降水一致偏少型明显减少;前一年夏秋季节赤道中东太平洋关键区海温与次年宁夏春季降水存在持续5~8个月的显著高相关,其中7~9月相关最显著,且相关程度逐步提高;研究发现,前一年夏秋季节,赤道中东太平洋关键区海温异常,通过海气相互作用,对次年春季北半球500 h Pa高度距平场上中高纬度大气环流的配置以及西太平洋副热带高压的位置产生明显的影响,近而影响形成次年春季宁夏降水的水汽来源以及空间分布。因此,这些前期的稳定强信号对宁夏春季降水预测具有明确的指示意义。
Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphere- ocean coupled model, we conducted two experiments (CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature (SST) modes to the occurrence of E1 Nino events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of E1 Nino events during the boreal autumn in an E1 Nino developing year. However, it weakens E1 Nino events or even promotes cold phase conversions in an E1 Nino decaying year. Therefore, the en- tire period of the E1 Nino is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the E1 Nino developing years, the positive Indian Ocean Dipole (IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer E1 Nino event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin (IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Nino decaying years. As a result, the E1 Nino event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the E1 Nino during the developing years, whereas the IOB mode affects the E1 Nino during the decaying years.
HONG XiaoYuanHU HaiBoYANG XiuQunZHANG YuanLIU GuoQiangLIU Wei