Members of the caveolin family played important roles during fundamental cellular processes,such as regulation of cell morphology,migration,and gene expression in muscle cells.In this study,caveolin-1 (Cav-1),one of the caveolins,was identified from longissimus dorsi muscle of Large Yorkshire pig and Chinese indigenous Lantang pig based on the results of mRNA differential display analysis.The deduced amino acids sequence of the porcine Cav-1 contained a caveolin domain,and was very conservative among different species.The Cav-1 mRNA was widely expressed in the eight tissues in this study,including heart,liver,kidney,encephalon,spleen,lung,longissimus dorsi muscle,and back fat, and the highest expression quantity was found in back fat of the two pig breeds.The expression quantity of porcine Cav-1 in back fat and longissimus dorsi muscle of Lantang pig was significantly higher than that of Large Yorkshire(P<0.01,and P<0.05,respectively).These results suggested that the Cav-1 might be a candidate gene for carcass traits,and might provide valuable information for understanding the mechanism of caveolae signaling in fat deposition by using the animal model of pig.
WANG Chong1,MEI YingJie 1,LI Li 1,MO DeLin 2,LI JiaQi 1,ZHANG Hao 1,TIAN XingGuo 1 &CHEN YaoSheng2 1College of Animal Science,South China Agricultural University,Guangzhou 510642,China
Objective:To evaluate the effect and profitability of using the quantitative trait loci (QTL)-linked direct marker (DR marker) in gene-assisted selection (GAS). Methods: Three populations (100, 200, or 300 sows plus 10 boars within each group) with segregating QTL were simulated stochastically. Five economic traits were investigated, including number of born alive (NBA), average daily gain to 100 kg body weight (ADG), feed conversion ratio (FCR), back fat at 100 kg body weight (BF) and intramuscular fat (IMF). Selection was based on the estimated breeding value (EBV) of each trait. The starting frequencies of the QTL's favorable allele were 0.1, 0.3 and 0.5, respectively. The economic return was calculated by gene flow method. Results: The selection efficiency was higher than 100% when DR markers were used in GAS for 5 traits. The selection efficiency for NBA was the highest, and the lowest was for ADG whose QTL had the lowest variance. The mixed model applied DR markers and obtained higher extra genetic gain and extra economic returns. We also found that the lower the frequency of the favorable allele of the QTL, the higher the extra return obtained. Conclusion: GAS is an effective selection scheme to increase the genetic gain and the eco- nomic returns in pig breeding.