A new Koppelman-Leray-Norguet formula of (p,q) differential forms for a strictly pseudoconvex polyhedron with not necessarily smooth boundary on a Stein manifold is obtained, and an integral representation for the solution of -equation on this domain which does not involve integrals on boundary is given, so one can avoid complex estimates of boundary integrals.
Using the invariant integral kernel introduced by Demailly and Laurent-Thiebaut, complex Finsler metric and nonlinear connection associating with Chern-Finsler connection, we research the integral representation theory on complex Finsler manifolds. The Koppelman and Koppelman-Leray formulas are obtained, and the \(\overline \partial \)-equations are solved.