Anti de Sitter space is a maximally symmetric, vacuum solution of Einstein's field equation with an attractive cosmological constant, and is the hyperquadric of semi-Euclidean space with index 2. So it is meaningful to study the submanifold in semi-Euclidean 4-space with index 2. However, the research on the submanifold in semi-Euclidean 4-space with index 2 has not been found from theory of singularity until now. In this paper, as a generalization of the study on lightlike hypersurface in Minkowski space and a preparation for the further study on anti de Sitter space, the singularities of lightlike hypersurface and Lorentzian surface in semi- Euclidean 4-space with index 2 will be studied. To do this, we reveal the relationships between the singularity of distance-squared function and that of lightlike hypersurface. In addition some geometric properties of lightlike hypersurface and Lorentzian surface are studied from geometrical point of view.
利用Arnol'd的Legendrian理论,对三维Anti de Sitter空间中Lorentzian曲面进行了研究.引入光维高度函数概念研究了三维Anti de Sitter空间Lorentzian曲面的S1t×S1s-值、光锥Gauss映射的奇点,进行了奇点分类,揭示了类光Causs-kronecker曲率之间的关系;并研究了Lorentzian曲面的一些基本几何性质.