This paper proposes an analytical solution for a 5-DOF manipulator to follow a given trajectory while keeping the orientation of one axis in the end-effector frame. The forward kinematics and inverse kinematics for a 5-DOF manipulator are analyzed systematically. The singular problem is discussed after the forward kinematics is provided. For any given reachable position and orientation of the end-effector, the derived inverse kinematics will provide an accurate solution. In other words, there exists no singular problem for the 5-DOF manipulator, which has wide application areas such as welding, spraying, and painting. Experiment results verify the effectiveness of the methods developed in this paper. Keywords Inverse kinematics - modeling and control - 5-DOF manipulator This work was supported by the National High Technology Research and Development Program of China (No. 2002AA422160), and the National Key Fundamental Research and Development Project of China (973, No.2002CB312200)De Xu graduated from Shandong University of Technology (SUT), China in 1985. He received a Masters degree from SUT in 1990, and a Ph.D. degree from Zhejiang University, China in 2001. He has been with the Institute of Automation, at the Chinese Academy of Sciences (CASIA) since 2001. He is an associate professor with the Laboratory of Complex Systems and Intelligence Science, CASIA. He worked as on academic visitor in the Department of Computer Science, at the University of Essex from May to August 2004. He is a member of the IEEE. His research interests include robotics and automation, especially the control of robots such as visual and intelligent control.Carlos Antonio Acosta Calderon received a B.S. degree in Computer Science Engineering from Pachuca Institute of Technology, Mexico in 2000, and a M.Sc. degree in Computer Science (Robotics and Intelligent Machines) from the University of Essex, UK in 2001. He is currently pursuing a Ph.D degree in Computer Science at the University of Essex, UK. His research interests have focused o
为实现工业机器人自动跟踪曲线焊缝,提出了协调焊枪运动和视觉跟踪的视觉伺服控制方法.建立了特征点的数学模型,并在此基础上确定机器人运动的旋转轴.设计了一种双层结构的模糊视觉伺服控制器,通过动态确定控制量有效范围来保证图像特征存在于视场中.为准确确定有效范围,设计了带模型动态补偿的K a lm an滤波器.曲线焊缝的自动跟踪实验验证了所提方法的有效性.