Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects.The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters:jet Reynolds number from 27000 to 130000,relative nozzle to surface distance from 3.3 to 30,and relative surface curvature from 0.005 to 0.030.Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics.On one hand,an increase of relative nozzle to surface distance(increasing jet diameter in fact)enhances the average heat transfer around the surface for the same curved surface.On the other hand,the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter.Finally,experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect.This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces,which is of high importance to the design of the aircraft anti-icing system.
Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° a 90°, and 13.2 r/d 42.03. The finding was that the heat transfer performance at the jet-impingement stagnation point with two rows of aligned jet holes was the same as that with a single row of jet holes or the middle row of three-row configurations when the circumferential angle of the two jet holes was larger than 30°. The attenuation coefficient distribution of the jet impingement heat transfer in the chordwise direction was so complicated that two zones were divided for a better analysis. It indicated that: the attenuation coefficient curve in the jet impingement zone exhibited an approximate upside-down bell shape with double peaks and a single valley; the attenuation coefficient curve in the non-jet impingement zone was like a half-bell shape, which was similar to that with three rows of aligned jet holes; the factors,including Rej, H/d and r/d, affected the attenuation coefficient value at the valley significantly.When r/d was increased from 30.75 to 42.03, the attenuation rates of attenuation coefficient increased only by 1.8%. Consequently, experimental data-based correlation equations of the Nusselt number for the heat transfer at the jet-impingement stagnation point and the distributionof the attenuation coefficient in the chordwise direction were acquired, which play an important role in designing the wing leading edge anti-icing system with two rows of aligned jet holes.
Jia YULong PENGXueqin BUXiaobin SHENGuiping LINLizhan BAI