A further development of exclusively inverse frequency domain method for leak detection in pipelines is presented and validated.The location and leakage can be determined by analyzing the difference of transient water head response between the simulated and measured data in frequency domain.The transient signals are generated by portion sharp closure of a valve from the small constant opening and it needs only a few meters of water.The discrete boundary conditions and observation data are both transformed in frequency domain by Laplace transform.Example in numerical simulation is studied for demonstration of this approach.The application of the method to an experimental pipeline confirms the analysis and illustrates successful detection of the single pipeline leak.The precalibration approach is presented to minimize the effect of data and model error and it splits the method into two parts.One uses data from a known state to fit the parameters of the model and the other uses data from the current state for the fitting of leak parameters using the now calibrated model.Some important practical parameters such as wave speed,friction in steady and unsteady state and the adaptability of the method are discussed.It was found that the nonlinearity errors associated with valve boundary condition could be prevented by consideration of the induced flow perturbation curve shape.
The Middle Route Project for South-to-North Water Transfer, which consists of a long artificial open channel and various hydraulic constructions, is a big water conveyance system. A numerical modeling of water conveyance in the ice period for such large-scale and long distance water transfer project is developed based on the integration of a river ice model and an unsteady flow model with complex inner boundaries. A simplified method to obtain the same flow discharge in the upstream and downstream of the structure by neglecting the storage effect is proposed for dealing with the inner boundaries. According to the measured and design data in winter-spring period, the whole ice process, which includes the formation of the ice cover, its development, the melting and the breaking up as well as the ice-water dynamic response during the gate operation for the middle route, is simulated. The ice chara- cteristics and the water conveyance capacity are both analyzed and thus the hydraulic control conditions for a safety regulation are obtained. At last, the uncertainties of some parameters related to the ice model are discussed.
The leak detection is of great importance in the reliable operation and management of a pipeline system. Recently, attention is shifted to the use of the time domain or frequency domain methods based on the transient analysis. These methods sometimes require accurate pressure signals obtained during the transient period or by creating ideal conditions in testing. This paper proposes a method that does not require transient simulations over the whole or an extended period of time, but uses the first transient pressure oscillation to detect leaks. The method considers the propagation of the pressure oscillation wave created from a fast valve closure and the reflected damp wave from the leak. A leak in the pipe gives rise to reflected waves which in turn create discontinuities in the observed signal at the measurement section. The timing of the reflected damp wave and the magnitude represent the location and the size of the leak, respectively. An analytical expression is derived based on the Method Of Characteristic (MOC) for the relationship between the leakage and the reflected magnitude. The leak detection procedure based on the method is also given. Then the reliability of the method is tested on numerically simulated pressure signals and experimental pressure signals with calibrated leak parameters, and the results indicate a successful application and the promising features of the method.