We obtained n-type and p-type modified graphene by mixing quantum dots and depositing electron-acceptor molecules on the surface of graphene, respectively. The electrical and optical properties of these two types of samples were measured. For n-type modified graphene, the electrons were transferred from quantum dots to graphene. The resistance of these quantum dots in modified n-type graphene is significantly smaller than that of pristine graphene. For p-type graphene, modified by electron-acceptor organic molecules of tetracyanoethylene (TCNE), electrons were transferred from graphene to TCNE molecules. The resistance of this molecular modified p-type graphene is about 10% larger than that of pristine graphene. The charge transfer effect on the optical properties of graphene was investigated with Raman spectra.
The developed visualization methods of two dimensional (2D) site and three dimensional (3D) cube representations have been performed to show the orientation of transition dipole, charge transfer, and electron-hole coherence in two-photon absorption (TPA). The 3D cube representations of transition density can reveal visually the orientation and strength of transition dipole moment, and charge different density show the orientation of charge transfer in TPA. The 2D site representation can reveal visually the electron-hole coherence in TPA. The combination of 2D site and 3D cube representations provide clearly inspect into the charge transfer process and the contribution of excited molecular segments for TPA.