Without the linear growth condition, by the use of Lyapunov function, this paper estab- lishes the existence^and-uniqueness theorem of global solutions to a class of neutral stochastic differen- tim equations with unbounded delay, and examines the pathwise stability of this solution with general decay rate. As an application of our results, this paper also considers in detail a two-dimensional unbounded delay neutral stochastic differential equation with polynomial coefficients.
This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.