An effective and environmentally benign benzylic oxidation for transition of alkylarenes into the corresponding carbonyl compounds was reported. Alkylarenes were mixed and stirred with potassium bromide, m-chloroperbenzoic acid and a catalytic amount of iodobenzene in water at 60 ℃ for several hours, a series of the corresponding carbonyl compounds was obtained in moderate to good yields. In the reaction, iodobenzene was first oxidized by m-chloroperbenzoic acid into the hypervalent iodine intermediate which then reacted with potassium bromide to form the key radical initiator for the benzylic oxidation.
An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylbenzenesulfonic acid in THF at room temperature for 24 h,and a series of the monochlorinated compounds was obtained in good yields.In this protocol,the catalyst iodobenzene was first oxidized into the hypervalent iodine intermediate,which then treated with lithium chloride and finally reacted with aromatic compounds to form the chlorinated compounds.
Using a catalytic amount of Nal and a stoichiometric oxidant Oxone-@,a convenient procedure has been developed for the catalytic oxidative 1,2-shift of arylalkenes in CH3CN/H2O at room temperature,which provides the corresponding α-aryl ketones in moderate to good yields.In this protocol,sodium iodide is first oxidized into hypoiodous acid,which reacts with arylalkene to afford iodohydrin.Then,the iodohydrin is transformed into the α-aryl ketone via an oxidative 1,2-shift rearrangement.