Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress-strain relation is established with Preisach-Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR- NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.
In most previous models,simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation,which implies an instantaneous thermal energy deposition in the medium.Due to the long thermal relaxation time τ(20 s-30 s) in biological tissues,the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation.The thermal wave model of bio-heat transfer(TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure.In this paper,COMSOL Multiphysics 3.5a,a finite element method software package,is used to simulate the temperature response in tissues based on Pennes and TWMBT equations.We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising and it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate.The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating.Besides,thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time.The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising.On the contrary,heat diffusion,which can be described by thermal conductivity,has little effect on the temperature rising.
Acoustical tweezer is a primary application of the radiation force of a sound field. When an ultrasound focused beam passes through a micro-particle, like a cell or living biological specimens, the particle will be manipulated accurately without physical contact and invasion, due to the three-dimensional acoustical trapping force. Based on the Ray acoustics approach in the Mie regime, this work discusses the effects on the particle caused by Gaussian focused ultrasound, studies the acoustical trapping force of spherical Mie particles by ultrasound in any position, and analyzes the numerical calculation on the two-dimensional acoustical radiation force. This article also analyzes the conditions for the acoustical trapping phenomenon, and discusses the impact of the initial position and size of the particle on the magnitude of the acoustical radiation force. Furthermore, this paper considers the ultrasonic attenuation in a particle in the case of two-dimension, studies the attenuation's effects on the acoustical trapping force, and amends the calculation to the ordinary case with attenuation.