Mercury (Hg) contents in ten chemical fertilizers were determined, and the effect of calcium superphosphate (CSP) on the uptake and translocation of Hg in corn seedlings was investigated by pot experiments. CSP was applied at the levels of 0, 66.7, and 133.4 mg P2O5/kg to Hg-treated (2 mg/kg) and untreated soils. CSP had the highest Hg content (5.1 mg/kg), followed by the NPK compound fertilizer 15-5-5 (15% N, 5% P2O5, 5% K2O) (1.2 mg/kg), then by nitrogen fertilizers (except for ammonia sulfate) and potassium fertilizers. Application of CSP did not obviously iuence the biomass of corn roots, but it significantly increased the biomass of corn shoots in Hg-treated soil. Application of CSP at the levels of 66.7 and 133.4 mg P2O5/kg did not obviously iuence the uptake of Hg by corn seedlings on soils without Hg treatment, but it decreased the Hg uptake of corn seedlings significantly on Hg-treated soils. The transfer coefficient of Hg in corn seedlings improved slightly on soils without Hg treatment, but decreased slightly on Hg-treated soils with the application of CSP. These results implied that CSP could ameliorate Hg toxicity to corn seedlings by inhibiting the uptake and the translocation of Hg in plants on Hg-polluted soils.
The exchange of mercury(Hg) across the air-water interface is an important part of Hg biogeochemical cycle.Mercury fluxes across the air-water interface in paddy fields were measured by a Dynamic Flux Chamber(DFC) coupled with a Lumex multifunctional mercury analyzer RA-915+ at two sites(Chengjiang(CJ) and Caoshang(CS)) in Beibei,Chongqing,China in 2008.The results showed that mercury emission followed a power-law relationship with solar radiation and air temperature,and it increased exponentially with water temperature at both sites.Mercury emission was mainly influenced by the solubility of gaseous elemental Hg,photo-thermal effect,electron activity(Eh) and air Hg concentrations.Solar radiation made the greatest direct contribution to mercury emission during the daytime(0.80),with an 83.60% contribution,whereas at nighttime the water temperature(0.72) contributed to 71.65% of emissions.The temperature gradient between water and air might also influenced mercury emission across the air/water interface at nighttime.These findings suggest that paddy fields could act as a significant source of atmospheric mercury,and it can contribute significantly to the atmospheric mercury in a local region.
Dissolved organic matter(DOM) plays an important role in the process of mercury release from water body.In this study,the influence of DOM from different sources(DOMR,DOMS and DOMH,extracted from rice straw,compost and humic soil respectively) on mercury reduction was investigated.The molecular weight distribution and chemical composition of DOM from each source were determined using ultrafiltration membrane technique and elemental analysis respectively.The result showed that mercury release from DOM-added samples was much lower than the control;the lowest mercury release flux was observed in the treatment of DOMH,25.02% of the control,followed by DOMS and DOMR,62.46% and 64.95% of the control,respectively.The higher saturation degree and lower molecular weight of DOMH was responsible for the highest inhibition degree on the mercury release.The link between DOMH,concentration and mercury flux was also estimated and the result showed that mercury flux was increased with DOMH at lower concentration,while decreased with DOMH at higher concentration.Different mechanism dominated the influence of DOM on mercury release with variation of DOM concentration.
Yutao ZhangXi ChenYongkui YangDingyong WangXiao Liu