辽宁省“百千万人才工程”资助项目(2012)
- 作品数:3 被引量:18H指数:3
- 相关作者:陈涛涛迟道才孙淼于洋栾策更多>>
- 相关机构:沈阳农业大学更多>>
- 发文基金:辽宁省“百千万人才工程”资助项目公益性行业(农业)科研专项更多>>
- 相关领域:轻工技术与工程天文地球更多>>
- ARIMA和蒙特卡洛方法在预测降水量中的应用被引量:3
- 2015年
- 为提高组合模型的预测精度,使其更好的应用于旱灾预测,采用差分自回归移动平均模型(ARIMA)模型和蒙特卡洛(Monte Carlo)方法分别对降水序列的线性、周期和非线性、随机部分进行预测,并通过博弈论组合赋权,建立基于博弈赋权的ARIMA和蒙特卡洛组合模型。以吉林省松原地区为例,利用1953~2012年逐月降水资料建模并预测,并与最小二乘法赋权法进行对比。结果表明:在对松原地区2012年月降水量的预测中,ARIMA模型预测值的决定系数为0.908,蒙特卡洛方法预测值的决定系数为0.941;应用博弈理论拟合蒙特卡洛方法和ARIMA模型的预测值,其结果的决定系数为0.945,高于最小二乘法拟合结果。蒙特卡洛方法的预测精度高于ARIMA模型,更适合降水量数据。同时将博弈理论应用于拟合两种方法的预测结果,使预测数据的线性和非线性特征有机结合起来,提高了预测精度,是切实可行的。
- 迟道才王子凰陈涛涛许杏娟张瑞
- 关键词:ARIMA博弈理论最小二乘法月降水量
- 基于EMD的BP神经网络在凌河流域旱灾预测中的应用被引量:7
- 2014年
- 为提高旱灾预测模型预测精度,利用EMD(经验模态分解法)处理非平稳信号的优势,将其应用到BP神经网络预测模型中,建立基于EMD的BP神经网络旱灾预测模型,对凌河流域44个观测站(小凌河流域11站、大凌河流域33站)共51年(1960~2010)的降水资料进行旱灾预测应用,同时将基于EMD的BP神经网络旱灾预测模型结果与BP神经网络预测模型结果进行对比。结果表明:小凌河流域基于EMD的BP神经网络预测模型、BP神经网络预测模型的年均降水量预测值均方误差(MSE)分别为0.0011和0.0076,决定系数(R2)分别为0.95和0.83;大凌河流域基于EMD的BP神经网络预测模型、BP神经网络模型的年均降水量预测值均方误差(MSE)分别为0.0032和0.0092,决定系数(R2)分别为0.93和0.79。基于EMD的BP神经网络预测值均方误差(MSE)较小且决定系数(R2)较高,均优于BP神经网络预测值,提高了BP神经网络旱灾预测模型预测精度,具有一定的可行性。
- 于洋迟道才陈涛涛孙淼栾策
- 关键词:EMDBP神经网络
- 极限学习机在洪涝灾害预测中的应用被引量:8
- 2014年
- 为了减轻洪涝灾害对人类的伤害,将极限学习机(extreme learning machine,ELM)引用到洪涝灾害预测中,利用凌河流域1960~2010年44个观测站(其中大凌河流域33站、小凌河流域11站)的降水资料,对凌河流域洪涝灾害进行预测,并将其与传统神经网络预测结果进行对比分析.结果表明:基于极限学习机预测模型的年均降水量预测值,大凌河流域的均方误差(MSE)为0.003,决定系数(R2)为0.927;小凌河流域的均方误差(MSE)为0.0037,决定系数(R2)为0.8481,均满足误差精度要求,其结果均优于BP神经网络预测模型的均方误差值和决定性系数.说明极限学习机预测模型用于洪涝灾害预测效果良好,为洪涝灾害预测提供了新的方法.
- 孙淼陈涛涛于洋王子凰迟道才
- 关键词:BP神经网络