In this study, we analyze Cluster observations of whistler-mode chorus and hiss waves during the event of August 19-21, 2006. Chorus is present outside the plasmasphere and hiss occurs inside the plasmasphere. Using a recently constructed plasma boundary layer model, we perform a ray-tracing study on the propagation of chorus. Numerical results show that chorus can penetrate into the plasmasphere through the plasma boundary layer, evolving into hiss. The current data analysis and modeling provide a further observational support for the previous findings that chorus is the origin of plasmaspheric hiss.
Ray tracing study of electromagnetic ion cyclotron (EMIC) waves is conducted based on a realistic plasma density model. The simulation result shows that EMIC waves propagate away from the equatorial source region to higher latitudes basically along geomagnetic field lines, and are reflected at the region where their frequency matches the local bi-ion frequency. H+ band suffers H+-He+ bi-ion frequency reflection at lower latitudes, whereas He+ band suffers He+-O+ bi-ion frequency reflection at higher latitudes. Moreover, the concentration of heavy ions slightly affects the bi-ion frequencies and then slightly determines the reflection location of ray paths of EMIC waves. The current results present the first detailed study on the propagation characteristics of EMIC waves associated with bi-ion frequencies.