Three small molecules with the same arms and different cores of perylene diimide(PDI)or indaceno[2,1-b:6,5-b']dithiophene(IDT)were designed and synthesized as the acceptor materials for P3HT-based bulk-heterojunction(BHJ)solar cells.The impacts of the different cores on the optical absorption,electrochemical properties,electron mobility,film morphology,photoluminescene characteristics,and solar cell performance were thoroughly studied.The three compounds possess a broad absorption covering the wavelength range of 400–700 nm and relatively low lowest unoccupied molecular orbital(LUMO)energy levels of?3.86,?3.81 and?3.99 eV.The highest power conversion efficiency of 0.82%was achieved for the BHJ solar cells based on SM3 as the acceptor material,the compound with a PDI core.
LIU XinCAI PingCHEN DongChenCHEN JunWuSU ShiJianCAO Yong
An organic compound exhibiting simultaneously reversible switch between its emission colors and luminescence mechanisms,possessing high contrast from deep blue normal fluorescence(NF) to yellow thermally activated delayed fluorescence(TADF),is reported. Based on these two complementary colors, white-light emission combining NF and TADF from a single compound can be achieved in various states. Experimental results and density functional theory calculations indicate that the controllable conformational distribution under thermal and mechanical activation is the mechanism responsible for the reversible switching behavior.
Zuozheng HeXinyi CaiZhiheng WangDongjun ChenYunchuan LiHaobin ZhaoKunkun LiuYong CaoShi-Jian Su
A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient electron injection capability from high work-function metals. The relationships between the photophysical and electrochemical properties and the polymer backbone structure were systematically investigated. These alcohol-soluble carbazole-based copolymers were used as cathode interlayers between the high work-function metal A1 cathode and P-PPV emissive layer in polymer light-emitting diodes with device structure of ITO/PEDOT:PSS/P-PPV/interlayer/A1. The resulting devices exhibited improved performance due to the better electron injection/transporting ability of the designed copolymers from A1 cathode to the light-emitting layer.