The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to direct threats to national food security and regional sustainable development. Therefore, it is necessary to summarize integrated prevention and control experience of small watersheds in black soil region of Northeast China. Tongshuang small watershed, a typical watershed in rolling hills of typical black soil areas in Northeast China, is selected as the study area. Based on nearly 50 years' experience in prevention and control of soil and water loss, the structures and overall benefits of an integrated prevention and control system for soil and water loss are investigated. Then, the 'three defense lines' tri-dimensional protection system with reasonable allocation of different types of soil and water control measures from the hill top to gully is systematically analyzed. The first line on the top hill can weaken and block uphill runoff and sediment, hold water resources and improve soil property. The second line on the hill can truncate slope length, slow down the runoff velocity and reduce erosion energy. The third line in the gully is mainly composed of waterfall engineering, which can inhibit soil erosion and restore land resources. The 'three defense lines' system is feasible for soil and water loss control of small watersheds in the typical black soil region of Northeast China. Through the application of the in Tongshuang small watershed, There are effective improvements in ecological conditions in Tongshuang small watershed after the application of 'three defense lines' soil and water control system. Moreover, the integrated treatment paradigm for soil and water loss in typical black soil region is compared with that in loess region. The results of this study could offer references and experiences for other small watersheds in typical black soil region of Northeast China.
In this particular study,99 typical managed small watersheds which representing five water erosion areas in China were selected to study zonality of Runoff Reduction Efficiency(RRE)and of Sediment Reduction Efficiency(SRE).The RRE is the ratio of Effect of Runoff Reduction(ERR)by soil and water conservation measure over management degree in a watershed.And The SRE is the ratio of Effect of Sediment Reduction(ESR)by soil and water conservation measure over management degree in a watershed.First of ah,statistical analysis was applied to test the zonal effects of RRE and SRE between different water erosion regions.The results showed that the mean RRE values in northern regions were significantly greater than those of southern regions;and the mean SRE values in northern regions were significantly greater than those in southern regions.Next,the variation of RRE with runoff depth(H)was studied in direction of both latitude and longitude across regions influenced by East Asian Monsoon.Meanwhile,the variation of SRE with specific sediment yield(Y)was studied in direction of both latitude and longitude across regions influenced by East Asian Monsoon.The results showed that RRE had the inverse variation trend as H in both latitude and longitude direction and SRE had the same variation trend as Y in both latitude and longitude direction.Furthermore,the variation of unit management area Runoff Reduction Rate(RRR)with H and RRE was studied in direction of both latitude and longitude.And the variation of unit management area Sediment Reduction Rate(SRR)with Y and SRE was studied in direction of both latitude and longitude.It was found that RRR had the similar variation trend as H in latitude direction and there was critical point around 37°N greater than which RRR began to be equal to H or even larger;RRR had the similar variation trend as H in longitude direction and there was a critical point around 109°E lees than which RRR began to equal to or greater than H;SRR had the similar variation trend as Y in latitude direction
Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.