为了弥补传统MPCA(Modular Principal Component Analysis)方法在人脸识别中忽略子图像之间差异的缺陷,本文提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA).首先选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,然后将训练样本的子图像和测试样本的子图像进行最优投影,得到子特征矩阵.最后,求得样本间的距离,利用最小距离分类器进行样本的分类.在Yale人脸数据库上的实验结果表明:IFMPCA算法在人脸正确识别率方面优于传统PCA算法.