By using the first-principles calculations, structural and electronic properties of Au and Ti adsorbed WS2 monolayers are studied systematically. For Au-adsorbed WS2, metallic interface states are induced in the middle of the band gap across the Fermi level. These interface states origin mainly from the Au-6s states. As to the Ti adsorbed WS2, some delocalized interface states appear and follow the bottom of conduction band. The Fermi level arises into the conduction band and leads to the n-type conducting behavior. The n-type interface states are found mainly come from the Ti-3d and W-5d states due to the strong Ti–S hybridization. The related partial charge densities between Ti and S atoms are much higher and increased by an order of magnitude as compared with that of Au-adsorbed WS2. Therefore, the electron transport across the Ti-adsorbed WS2 system is mainly by the resonant transport, which would further enhances the electronic transparency when monolayer WS2 contacts with metal Ti. These investigations are of significant importance in understanding the electronic properties of metal atom adsorption on monolayer WS2 and offer valuable references for the design and fabrication of 2D nanodevices.
A tiny number of Zn atoms were deposited on Si(111)-(797) surface to study the evolution process of Zninduced nanoclusters. After the deposition, three types(type I, II, and III) of Zn-induced nanoclusters were observed to occupy preferably in the faulted half-unit cells. These Zn-induced nanoclusters are found to be related to one, two, and three displaced Si edge adatoms, and simultaneously cause the depression of one, two, and three closest Si edge adatoms in the neighboring unfaulted half-unit cells at negative voltages, respectively. First-principles adsorption energy calculations show that the observed type I, II, and III nanoclusters can reasonably be assigned as the Zn3Si1, Zn5Si2, and Zn7Si3 clusters,respectively. And Zn3Si1, Zn5Si2, and Zn7Si3 clusters are, respectively, the most stable structures in cases of one, two, and three displaced Si edge adatoms. Based on the above energy-preferred models, the simulated bias-dependent STM images are all well consistent with the experimental observations. Therefore, the most stable Zn7Si3 nanoclusters adsorbed on the Si(111)-(797) surface should grow up on the base of Zn3Si1 and Zn5Si2clusters. A novel evolution process from Zn3Si1 to Zn5Si2, and finally to Zn7Si3 nanocluster is unveiled.